DEPARTMENT OF CHEMISTRY

About the Department

G.T.N. Arts College is the only Aided Institution in Dindigul district serving for the welfare of urban and rural students belonging to both genders. It caters to the needs of the most economically downtrodden students. The Chemistry department was started during the academic year 1971-72. The department was upgraded with P.G.Programme in the year 2000. This department was also recognized as Centre for Research by Madurai Kamaraj University in the year 2003. The department started under the headship of Prof.K.Gopalan, brought laurels to the Institution by securing University ranks and producing 100% results in the first Batch itself.. After the retirement of Prof.Gopalan, Prof.P.Jayaram took charge as the Head of the Department, who was followed by Dr.N.Rajendran, Dr.S.Rajendran, Dr.M.S.Dheenadyalan and Dr.J.Sathiyabama.At present, Dr. G.N. Kousalya is the Head of the Department of Chemistry. This P.G and Research Department has successfully produced more than 50 Ph.Ds and 150 M.Phil. Our Chemistry Department is considered as one of the best departments among colleges affiliated to Madurai Kamaraj University for producing university rank holders and gold medallists almost every year. The department also offers consultation for various chemical based industries in and around Dindigul district. Our Chemistry students regularly visit various chemical industries and industries in SIDCO Industrial Estate, Dindigul every year as part of the academic and industries Interaction Programmes. These visits help the students to gain knowledge about the industrial environment and enhance their entrepreneurial skills.

PRINCIPAL

Dr. P. Balagurusamy, M.A., M.Phil., M.Ed., P.G.D.C.A., Ph.D.,

STAFF

1. Dr. J. Sathiyabama, M.Sc., M.Phil., M.Ed., Ph.D., Associate Professor & Dean of

Science

- 2. Dr. G.N. Kousalya, M.Sc., M. Phil., Ph.D., Assistant Professor and Head
- 3. Mr. T. Srinivasan, M.Sc., M. Phil., B.Ed., Assistant Professor
- 4. Mr. S. Kannan, M.Sc., M.Phil., B.Ed., Assistant Professor
- 5. Dr. A. Sahaya Raja, M.Sc., M.Phil., B.Ed., Ph.D., Assistant Professor
- 6. Dr. M. Pandeeswaran, D.S.I., M.Sc., Ph.D., Assistant Professor
- 7. Mrs. K. Rathika, M.Sc., M.Phil., M.Phil., Assistant Professor and Head (SSC)
- 8. Mrs.V. Vanitha, M.Sc., B.Ed., M.Phil., (Ph.D)., Assistant Professor (SSC)
- 9. Ms. P. Angel, M.Sc., B.Ed., M.Phil., Assistant Professor (SSC)
- 10. Mrs. S. Sulochana, M.Sc., B.Ed., M.Phil., (Ph.D)., Assistant Professor (SSC)
- 11. Mr. C.Siva Kumar, M.Sc., PGDCA., DFN., (Ph.D)., Assistant Professor (SSC)

Programme Outcomes for Science

On successful completion of the B.Sc.programme, the graduates will be able to,

- 1. Apply the knowledge acquired in the respective disciplines and also have a multidisciplinary perspective towards the study of sciences.
- 2. Develop skills like analytical reasoning, critical thinking and problem solving to evince interest in higher education and research for offering solutions to societal and environmental problems.
- 3. Communicate articulately and effectively and interpret the results obtained from scientific studies and put forthinnovative ideas to carve a niche in their domain.
- 4. Inculcate the principles and ethics learnt from the field of studyand exhibit the qualities like leadership, entrepreneurship and teamwork for discharging their duties as responsible citizens.
- 5. Utilize the growing advancements in Information and Communication Technology and embrace digital learningto become life-long learners.

Programme Specific Outcomes (PSOs)

On successful completion of the B.Sc., programme, the graduate will be able to

D0.01	
PSOI	Apply the principle of chemistry and the basic fundamental applications of
	chemical and scientific theories involving environmental and biological
	chemistry.
PSO2	Exhibit skills in problem solving, critical thinking and analytical reasoning as
	applied to chemistry related issues.
PSO3	Carry out scientific experiments with the help of laboratory, as well as analytical
	instruments and accurately record and analyse the results of such experiments.
PSO4	Pursue postgraduate programme in higher educational institutions.
PSO5	Get suitable employment opportunities in industries and academic institutions
	and enhance employment chances and instill confidence to turn into
	entrepreneur.
PSO6	Qualify common entrance competitive and service commission examinations.
PSO7	Explicitly communicate and exchange their ideas in view of the theoretical and
	experimental findings, impact of chemistry on environment and society to
	connect the chemists and the non- chemists.
PSO8	Apply the concept of chemistry and carry out minor research project for solving
	impacts on society.
PSO9	Gaining knowledge of grammatical conventions, varieties, formulations courses
	and culture. Becoming competent to face competitive examination through
	development of language skills.
PSO10	Get the knowledge on conservation of environmental resources, ecosystem, and
	biodiversity and face the global conflicts.
PSO11	Develop the spirit of co-operation, team and leadership qualities, Involve in
	various social activities as a responsible citizen, Enhance the moral and ethical
	awareness by providing valuable courses
PSO12	Develop soft skills and abilities to become lifelong learners.

Department of Chemistry

Under Choice Based Credit System (CBCS)

Course Pattern for Chemistry

The Undergraduate degree course consists of five vital components. They are as

follows:

Part I	Language (Tamil / French)
Part II	English
Part III	Core Course (Theory, Practical, Electives, Allied and Project).

Part IV Skill Based, Non Major Electives, Environmental Studies, Value Education andSelf Study

Part V Physical Education (Non Semester) and Extension Activities.

Note: Internship will be during the vacation of IV and V Semester respectively (for a minimum of 15 days).

Objectives

The Syllabus for UG Chemistry Programme under semester system has been designed on the basis of Choice Based Credit System (CBCS), which would focus on job oriented programmes and value added education. It will come into effect from June 2020 onwards.

Eligibility

Candidates should have passed the Higher Secondary Examination, Government of Tamil Nadu or any other examination accepted by the syndicate of Madurai Kamaraj University as equivalent there to.

Duration of the Course

The students who join the UG Chemistry Programme shall undergo a study period of three academic years – Six semesters.

Part	Semester	Specification	No. of Courses	Hours	Credit	Total credits
Ι	I - IV	Languages(Tamil/French)	4	24	12	12
II	I - IV	English	4	24	12	12
III	I - VI	Core Courses Theory Practicals Electives Project Allied Courses Theory	10 5 2 1 8/8	36 24 8 - 32/40	36 16 8 2 3/2	102
IV	V & VI	Practicals Skill Based Courses	4/2	<u> 16/8 </u> 8	8	
	III & IV	Self Study Courses Soft Skills I Soft Skills II	2	-	4	20
	I & II	Non Major Electives	2	4	4	20
	I & II	 Value Education Environment and Gender Studies 	1 1	2 2	4	
v	I & II	Physical Education Practical (Non-Semester Course)	1	-	2	4
	IV	Extension Activities	1	-	2	
		Total	50/48	180	150	150

Summary of Hours and Credits – B.Sc Chemistry

Note: Internship will be during the vacation of IV and V Semester respectively (for a minimum of 15 days).

Sem	Part	Study Component	Course Code	Course Title	Hrs	Cred it	
	Ι	Tamil I /	20UTAL11/	jw;fhy ftpijAk; rpWfijAk; French Language And	6	3	
Ι		French I	20UFRL12				
	II	English I	20UENL11	English Language Through Literature – I	6	3	
		Core Course I 20UCHC11 Organic Chemistry		Organic Chemistry- I	3	3	
I		Core Course II	20UCHC12	Inorganic Chemistry- I	3	3	
			20UMAA11	Allied Mathematics – I /	- 14		
	III	Allied Course I	/ 20UZOA11	Life and Diversity of Non Chordates	6/4	5/4	
		Core practical I		20UCHC2P	Inorganic Semi micro Qualitative Analysis	2	1
		Allied Practical I	20UZOA2P	Allied Zoology Practical- I	2	1	
		Non Major Elective CourseI	20UCHN11	Industrial Chemistry	2	2	
	IV	Value Education	20UVEV11	Value Education	2	2	
				Total	30	21/20	
	Ι	Tamil II / French II	20UTAL21/ 20UFRL22	gf;jp ,yf;fpaKk; GjpdKk; French Language And Civilization II	6	3	
	II	English II	20UENL21	English Language Through Literature – II	6	3	
		Core Course III	20UCHC21	Physical Chemistry-I	3	3	
		Core Course IV	20UCHC22	Organic Chemistry-II	3	3	
			20UMAA21	Allied Mathematics II	6	5	
II	III	Allied Course II	20UZOA21	Life and Diversity of Chordates	4	4	
		Core practical I	20UCHC2P	Inorganic Semi micro Qualitative Analysis	2	2	
		Allied Practical I	20UZOA2P	Allied Zoology Practical- I	2	2	
	IV	Non Major Elective Course II	20UCHN21	Chemistry of Drugs	2	2	
	1 V	Environment and Gender Studies	20UEGS21	Environmental and Gender Studies	2	2	
	V	Physical Education Practical	20UPEV2P	Physical Education – Practical (Non-Semester Course)		2	
				Total	30	25/26	

Department of Chemistry (B.Sc.) Course Pattern – from 2020-2021 Onwards

	Ι	Tamil III / French III	20UTAL31/ 20UFRL31	fhg;gpa ,yf;fpaKk; ciueilAk; French Language And Civilization III	6	3
	II	English III	20UENL31	EnglishLanguage Through Literature – III	6	3
		Core Course V	20UCHC31	Inorganic Chemistry-II	4	4
III		Allied Course III	20UMAA31 /20UZOA31	Allied Mathematics – III / Zoology for Chemist – I	6/4	5/4
	ш	Allied Course I	20UPHA11	Allied Physics - I	4	4
		Core Practical II	20UCHC4P	Volumetric Analysis	2	-
		Allied Practical II	20UZOA4P	Allied Zoology Practical- II	2	-
		Allied Practical I	20UPHA2P	Allied Physics Practical I	2	-
	IV	IV Self Study Course 20USSS31 Soft Skills I		-	2	
				Total	30	21/20
	I Tamil IV / French IV		20UTAL41 / 20UFRL41	gz;ila ,yf;fpaKk; ehlfKk; / French Language, Culture And Civilization IV	6	3
	II	English -IV	20UENL41	EnglishLanguage Through Literature – IV	6	3
		Core Course VI	20UCHC41	Physical Chemistry - II	4	4
		Allied Course IV	20UMAA41	Allied Mathematics - IV	6	5
IV		Allied Course IV	20UZOA41	Zoology for Chemist – II	4	4
	III	Allied CourseII 20UPHA21 Allied Physics - II			4	4
		Core Practical II 20UCHC4P Volumetric Analysis		Volumetric Analysis	2	2
		Allied Practical II	20UZOA4P	Allied Zoology Practical II	2	2
		Allied Practical I	20UPHA2P	Allied Physics Practical I	2	2
	IV	Self Study Course	20USSS31	Soft Skills II		2
	V	Extension Activity	Common Code	Club Activities	-	2
				Total	30	27/28
		Core Course VII	20UCHC51	Organic Chemistry III	4	4
		Core Course VIII	20UCHC52	Inorganic Chemistry III	4	4
X7	III	Allied Course III	20UPHA31	Allied Physics - III	4	4
V		Core Elective	20UCHE51	Nano Science and Technology		
		Course I	20UCHE52	Analytical Chemistry	4	4
			20UCHE53	Medicinal Chemistry		

			180	150		
				Total	30	34
		course IV	20UCHS62	Dairy Chemistry	2	2
	IV	Skill based				-
		Skill based course III	20UCHS61	Polymer Chemistry	2	2
		Allied Practical II	20UPHA4P	Allied Physics Practical II	2	2
		Core Practical V	20UCHC6R	Experiments in Physical Chemistry	3	4
		Core Practical IV	20UCHC6Q	Organic Analysis and Estimation	2	4
		Core Practical III	20UCHC6P	Gravimetric Analysis and Organic Preparation	3	4
			20UCHE63	Green Chemistry		
		Core Elective	20UCHE62	Biochemistry	4	4
			20UCHE61	Industrial Chemistry		
VI	III	Allied Course IV	20UPHA41	Allied Physics - IV	4	4
		Core Course X	20UCHC62	Applied Chemistry	4	4
		Core Course IX	20UCHC61	Physical Chemistry III	4	4
				Total	30	22
	IV	Skill Based Course II	20UCHS52	Food Chemistry	2	2
		Skill Based Course I	20UCHS51	Water Technology	2	2
		Core Project I	20UCHC5P	Project	-	2
		Allied Practical II	20UPHA4P	Allied Physics Practical II	2	*
		Core Practical V	20UCHC6R	Experiments in Physical Chemistry Experiments	3	*
		Core Practical IV	20UCHC6Q	Organic Analysis and Estimation	2	*
		Core Practical III	20UCHC6P	Gravimetric Analysis and Organic Preparation	3	*

*Practical Examinations held at the end of each academic year.

SEM	Part	Course	Course Title	For the	Hr/Wk	Cr.	Marks
		Code		Department			
Ι	III	20UCHA11	Inorganic and	B.Sc	4	4	100
			Organic	Zoology			
			Chemistry				
III	III	20UCHA11	Inorganic and	B.Sc	4	4	100
			Organic	Physics			
			Chemistry				
II	III	20UCHA21	Inorganic and	B.Sc	4	4	100
			Physical	Zoology			
			Chemistry				
IV	III	20UCHA21	Inorganic and	B.Sc	4	4	100
			Physical	Physics			
			Chemistry				
III	III	20UCHA31	Organic and	B.Sc	4	4	100
			Physical	Zoology			
			Chemistry	Chemistry			
V	III	20UCHA31	Organic and	B.Sc	4	4	100
			Physical	Physics			
			Chemistry				
IV	III	20UCHA41	Organic,	B.Sc	4	4	100
			Inorganic and	Zoology			
			Physical				
			Chemistry				
VI	III	20UCHA41	Organic,	B.Sc	4	4	100
			Inorganic and	Physics			
			Physical				
			Chemistry				
II	III	20UCHA2P	Volumetric	B.Sc	2	2	100
			Analysis	Zoology			
IV	III	20UCHA2P	Volumetric	B.Sc	2	2	100
			Analysis	Physics			
IV	III	20UCHA4P	Organic	B.Sc	2	2	100
			Analysis	Zoology			
VI	III	20UCHA4P	Organic	B.Sc	2	2	100
			Analysis	Physics			

Courses offered to Non-major Students by the Department of Chemistry (UG) Supportive:

Allied Courses

There will be FOUR Allied courses to fulfill the B.Sc programme during three years.

Subject	Maximum Marks	Year of Study
Mathematics/Zoology	100	I& II
Physics	100	II &III

The Syllabus for the Allied Courses can be obtained from the Allied Department of Physics and Mathematics/Zoology

PracticalsRecord Note Book: 10 marksInternal Examinations: 30 marksExternal Examinations: 60 marksTotal: 100 marks

Value Added Courses

The Department of Chemistry is offering the following Value Added Courses for thirty hours for all the UG students with no prejudice to the Under Graduate programme results.

Sl.No.	Semester	Course Code	Course Title
1.	III	20CCHE31	Sugar Technology
2	IV	20CCHE41	Perfume Chemistry
3	V	20CCHE51	Paper & Pulp Technology
4	VI	20CCHE61	Leather Technology

Extra-Credit Self Paced Courses For Advanced Learners

The Department of Chemistry has offered the following Extra Credit Self Paced Courses to enlighten the advanced learners. The department persuades the students to take virtual courses on MOOCS, SWAYAM and NPTEL.

- (i) Nuclear Technology
- (ii) Agricultural Chemistry
- (iii) Polymer Technology
- (iv) Clinical Chemistry
- (v) Pyrotechnology
- (vi) Fuel Chemistry

Programme B.Sc		Programme Code	UCH				
Course Code	20UCHC11	Number of Hours/Cycle	3				
Semester I		Max. Marks	100				
Part III		Credit	3				
Core Course I							
Course Title	Course Title Organic ChemistryI						
Cognitive level – Upto K3							

This course highlights the fundamentals of organic chemistry. Topics such as structure and physical properties, chemical reactivity of various organic compounds will be discussed in detail. Study of various fundamental groups such as alkanes, alkenes, alkyl halides, carbohydrates etc, will be conducted in detail. 9 Hours

Unit I: Structure and Bonding

Nomenclature and classification of dienes - isolated, conjugated and cumulated dienes -butadiene-1,2 and 1,4 additions - thermodynamic and kinetic controlled products -Diels - Alder reaction - synthesis of dienes - 1,3-butadiene, isoprene & chloroprene.

Cycloalkanes - Nomenclature-methods of formation-Wurtz reaction, Dieckmann ring closure & reduction of aromatic hydrocarbons - Chemical reactions. Baeyer's strain theory and its limitations.

Unit II:Stereoisomerism

Geometrical Isomerism:

Definition - geometrical isomerism of maleic and fumaric acids - aldoximes and ketoximes - determination of configuration of geometrical isomers - E, Z notations stereochemistry of addition of bromine to double bond.

Optical Isomerism:

Asymmetric synthesis, chirality, specifications of absolute configurations by R and S notation - Optical activity of compounds without asymmetric carbon atoms, allenes, spiranes, and biphenyl compounds - Optical activity of elements other than carbon atoms -Quaternary ammonium compounds and tertiary amine oxides.

Unit III: Polyhalogen derivatives

Chloroflurocarbons: Westran, Westrasol and Freon - preparation and applications, preparation and properties of CHCl₃, CHI₃ and CCl₄.

Organometalic compounds: Grignard reagents - preparation, structure and synthetic applications, limitations, organozinc, organocadmium and organolithium compounds.

Unit IV: Carbohydrates

Introduction - classification - mono, di, oligo and polysaccharide with examples, occurrence, manufacture, physical and chemical properties and uses, structural elucidation of sucrose, maltose, starch, cellulose, glycogen.

Unit V: Dves

9 Hours

9 Hours

Introduction - theories of colour and constitution - natural and synthetic dyes classification based on structure and application. Azodyes: preparatiom of Methylorange, Congo red and Bismarck brown - Triphenyl methane dyes: Preparation of Malachite green -Rosalinine and Crystal violet - Phthalein dyes: Phenolphthalein -Fluorescein and Eosin preparation and properties - Vat dyes: preparation of Indigo Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities. Seminar and PowerPoint Presentations.

Text Books

1.Soni.P.L., (2019), Text book of Organic Chemistry, Sultan Chand & Sons.

2. ArunBahl and Bahl.B.S., (2019), Text Book for Organic ChemistryS. Chand& Company Ltd, New Delhi.

9 Hours

Reference Books

- 1.R. L. Madan, (2010), Organic Chemistry, S Chand & Company Ltd.
- 2.Jerry March, (2015), *Reaction Mechanism of Organic compounds*. Wiley, India Edition7th
- 3.R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2011), *Organic Chemistry*, Pearson
- Publishers, New Delhi, 7th Ed.,

E-Resources

- https://chem.libretexts.org/
- https://libguides.reading.ac.uk/chemistry/e-resources.
- https://onlinelibrary.wiley.com/series/1079
- https://libguides.library.usyd.edu.au
- https://global.oup.com

Course Outcomes

On completion of the course, students will be able to

CO1	Explain mechanism of addition reaction in Dienes
CO2	Categorise and Demonstrate the Stereoisomers
CO3	Outline the structure and synthetic applications of Organometallic Compounds
CO4	Elucidate the structure of specific Carbohydrates
CO5	Classify the Dyes based on structure the applications

Mapping of Programme outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	2	2	2	1	1	1	1	1	1
CO2	2	2	1	2	2	2	1	1	1	1	1	1
CO3	2	2	2	2	2	2	1	2	1	1	1	1
CO4	1	2	3	2	2	2	1	2	1	2	1	1
CO5	2	1	2	2	3	2	1	2	1	1	1	1

1-Low	2-Moderate	3-High
	Articulation Mappir	ng-K Levels with Course Outcomes(COs)

			Section	Α	Section B	Section C
Units	COs	K-Level	MCQs		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
3	CO3	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
4	CO4	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
5	CO5	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
No. of	Questions to	be asked	10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total N	larks for ea	ch Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers **K3**. Application oriented Solving problems

K3-Application oriented-Solving problems

K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated
	(No Choice)	(Either/or)	(Open	Marks	without	(Rounded
			Choice)		choice	off)
K1	5	-	-	5	5	5%
K2	5	40	30	75	75	75%
K3	-	-	20	20	20	20%
Total	10	40	50	100	100	100%
Marks						

Distribution of Section-wise Marks and K Levels

Lesson Plan						
Unit	Description	Hours	Mode			
	a)Nomenclature and classification of dienes	2				
	isolated, conjugated and cumulated dienes.					
	b) butadiene-1,2 and 1,4 additions	1				
	c) Thermodynamic and kinetic controlled					
	products of Diels - Alder reaction.	2	Challs and			
Ι	d) Synthesis of dienes - 1,3-butadiene,		tally Dowor			
Structure and	isoprene & chloroprene.	1	taik, Fower			
Bonding	e) Cycloalkanes - Nomenclature-methods	1	point			
	of formation-Wurtz reaction,		presentation			
	f)Dieckmann ring closure & reduction of	1				
	aromatic hydrocarbons - Chemical reactions.					
	g) Baeyer's strain theory and its	1				
	limitations.					
	a)Definition - geometrical isomerism of maleic	1				
	and fumaric acids - aldoximes and ketoximes					
	b) determination of configuration of	1				
	geometrical isomers - E, Z notations					
	c)stereochemistry of addition of bromine to	1				
	double bond.		Chalk and			
II	d) Asymmetric synthesis, chirality,	1	talk Power			
Stereoisomerism	e)Specifications of absolute configurations by R	1	noint			
	and S notation		presentation			
	f) Optical activity of compounds without	2	presentation			
	asymmetric carbon atoms, allenes, spiranes,					
	and biphenyl compounds.					
	g) Optical activity of elements other than	2				
	carbon atoms - Quaternary ammonium					
	compounds and tertiary amine oxides.					
	a)Chloroflurocarbons: Freon – preparation and	1				
	application	_				
	b) Westran and Westrasol preparation and	1	~			
	applications,		Chalk and			
III	c) preparation and properties of CHCl ₃ , CHl ₃	2	talk, Power			
Polyhalogen	and CCl ₄ .		point			
derivatives	d) Organometalic compounds:Grignard	2	presentation			
	reagents - preparation, structure and synthetic	3				
	applications, limitations.					
	e)organozinc, organocadmium and	2				
	organolithium compounds.					
	a)Introduction - classification - mono, di, oligo	2	Chalk and			
IV	and polysaccharide with examples,	5	talk, Power			
Carbohydrates	occurrence.		point			
	b) Manufacture, physical and chemical	3	presentation			
	properties and uses.		1			

Lesson Plan

	c)Structural elucidation of sucrose, Structural elucidation of maltose, Structural elucidation of starch, Structural elucidation of cellulose, Structural elucidation of glycogen.	3	
V Dyes	 a)Introduction - theories of colour and constitution. b) Natural and synthetic dyes classification based on structure c)Classification based on application. d) Azodyes: preparatiom of methylorange, congo red, bismark brown. e)Triphenyl methane dyes: Preparation of malachite green - rosalinine and crystal violet. f) Phthalein dyes: Phenaolphthalein - fluorsecein and eosin preparation and properties – g) Vat dyes: preparation of Indigo. 	1 1 2 2 1 1	Chalk and talk, Power point presentation, Group Discussion

Course Designed by: Mr.S.Kannan, Mrs.V.Vanitha

Programme	B.Sc Programme Code		UCH			
Course Code	20UCHC12	Number of Hours/Cycle	3			
Semester	Ι	Max. Marks	100			
Part	III	Credit	3			
Core Course II						
Course Title Inorganic Chemistry-I						
Cognitive level – Upto K3						

The students are enabled to have knowledge on Atomic structure and periodicity of elements, understand the types of chemical bond and aquire the detailed knowledge on acids and bases.

Unit – IAtomic Structure (Wave Nature)

Dual Nature of Electron, Debroglie's Equation, Davison & Germer's Experiment, Thomson's Experiment, Heisenberg's Uncertainty Principle, Compton Effect, Schrodinger's Wave Equation (Equation Only), Quantum Numbers, Shape of orbitals, node, nodal planes, orbit, orbitals, Pauli's Exclusion Principle, Hund's Rule of Maximum Multiplicity, Afbau Principle and its limitations.

Unit – IIPeriodicity of Elements

The long form of periodic table, detailed discussion of the following properties of the

elements with reference to S & P - block.Effective Nuclear Charge, Screening Effect, Slater's rule, Variation of Effective. Nuclear Charge in Periodic Table. Atomic, Ionic & Covalent Radii- Ionization Energy, Successive Ionization Energy, Factors Affecting Ionization Energy, Applications. Electron Affinity, Variation of Electron Affinity. Electro Negativity, Variation of Electro Negativity with Bond Order, Partial Charge, Hybridizations, Nuclear Charge, Applications of Electro Negativity.

Unit – III Chemical Bonding-I (Lewis Theory)

Covalency, variable covalency - explanation, properties of Covalent compounds, Comparison of Ionic and Covalent Compounds, Failure of Octet Rule (Lewis concept) in covalent compounds. Sugden's concept of single linkage, Non-polar and Polar covalent bonds Hanny and Smyth equation. Dipole moment, application of dipole moment, Fajan's rule, Metallic bond..

Unit-IVChemical Bonding-II (Orbital Concept)

Linnet's Double – Quartet (D-Q) theory, VSPER Theory, Valence Bond Theory. Resonance, Resonance energy, Resonance structure of CO_2 , NO_2 , NO_3^- , CO_3^{2-} , ions. Hybridisation - AB₆, AB₅(lp), AB₄(lp)₂, AB₄, , AB₃(lp), AB₂(lp)₂, AB(lp)₃type with examples.

Unit-VAcids And Bases

Arrhenius Concept, Proton transfer theory, Concept of Lowry - Bronsted, Lux -Flood

Concept. Solvent - System Concept, Lewis Concept, Relative strength of acids and bases, Hard and Soft acids and bases, Pearson's concept, HSAB Principle and its applications.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

1.Soni, P.L., &Katyal, M., (2019), Text Book of Inorganic Chemistry, Sultan Chand

2. Madan R.D. (2010), Modern Inorganic chemistry, S.Chand and sons.

9Hours

9Hours

9Hours

9Hours

Reference Books

- 1.Lee. J.D, (2019), Concise Inorganic New Delhi.
- Chemistry, Wiley India (P) Ltd,
- 2.F. Albert Cotton, Geoffrey Wilkinson, Manfred Bochmann and Carlos Murilla, (2007) Advanced Inorganic Chemistry,, 6th Ed., Wiley India Pvt. Ltd.
- 3. Puri and Sharma, (2016), Text Book for Inorganic Chemistry, S. Chand & company Ltd.
- 4. Malik, Tuli and Madan, (2013), Selected topics in Inorganic chemistry, S.Chand and company Ltd,

E-Resources :

- http://www.chem4kids.com/files/atom_structure.html
- http://www.askiitians.com/revision-notes/chemistry/classification-of-elements-and periodicity-in-properties/
- http://www.slideshare.net/mobile/richardaraneta/chemical-bonding-basic-concepts
- http://www.breslyn.org/chemistry/bonding/3-Theories/index-theories.php
- http://www.freebookcentre.net/chemistry/Acid-Base-Chemistry-Books.html

Course outcomes

On completion of the course, students will be able to

CO1	Acquire the knowledge of an atom, differentiate the wave and particle character of
	an atom and predict the shape of orbitals and size of an atom.
CO2	Recognize the periodic table and explain the variation of properties in the periodic
	table.
CO3	Identify the properties of ionic and covalent compounds and generalize the various
	aspects of covalent compounds.
CO4	Explain the VSEPR and Valence Bond Theory, identify the structure of molecules
	and construct the structure based on the concept of Resonance and Hybridization.
CO5	Relate and apply the detailed knowledge of acids and bases.

Mapping of Programme outcomes with Course Outcomes

				0								
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	2	3	2	2	2	1	1	1	1	1	1
CO2	2	2	2	2	2	2	2	1	1	1	1	1
CO3	2	2	2	2	2	2	1	2	1	1	1	1
CO4	2	2	3	2	2	2	2	2	1	1	1	1
CO5	2	2	3	2	3	2	1	2	1	1	1	1
1-Lo	W	2-1	Modera	ate		3-Hig	h					

1-Low

3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
3	CO3	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
No. of Qu	uestions to	be asked	10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Ma	rks for eac	h Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers **K3-**Application oriented-Solving problems

K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated
	(No	(Either/or)	Open Choice	Marks	without	(Rounded
	Choice)				choice	off)
K1	5	-	-	5	5	5%
K2	5	40	20	65	65	65%
K3	-	-	30	30	30	30%
Total Marks	10	40	50	100	100	100%

Distribution of Section-wise Marks and K Levels

Unit	Description	Hours	Mode
	a)Dual Nature of Electron, Debroglie's	3	
	Equation, Davison & Germer's		
	Experiment,		
т	Thomson's Experiment, Heisenberg's		DDT
1	Uncertainty Principle, Compton Effect.		FFI
A 40000	b) Schrodinger's Wave Equation	3	Challs and Talls
Atomic	(Equation Only), Quantum Numbers,		
Structure	Shape of orbitals, node, nodal planes,		video
(wave Nature)	orbit, orbitals.	3	presentation
	c) Pauli's Exclusion Principle, Hund's		
	Rule of Maximum Multiplicity, Afbau		
	Principle and its limitations.		
	a) The long form of periodic table, detailed	3	
	discussion of the following properties of		
	the		
	elements with reference to S & P -		
	block.Effective Nuclear Charge,		
	Screening Effect, Slater's rule, Variation		
	of Effective. Nuclear Charge in Periodic	3	DDT
II	Table.		PP1
	b)Atomic, Ionic & Covalent Radii-		presentation,
Periodicity of	Ionization Energy, Successive Ionization		Chaik and Taik,
Elements	Energy, Factors Affecting Ionization		Video
	Energy, Applications.	3	presentation
	c)Electron Affinity, Variation of Electron		
	Affinity.Electro Negativity, Variation of		
	Electro Negativity with Bond Order,		
	Partial Charge, Hybridizations, Nuclear		
	Charge, Applications of Electro		
	Negativity.		
	a)Covalency, variable covalency –	3	
	explanation, properties of Covalent		
тт	compounds, Comparison of Ionic and		
111	Covalent Compounds.		PPT
	b)Failure of Octet Rule (Lewis concept)		presentation,
Chamical	in covalent compounds. Sugden's	3	Chalk and Talk,
Ronding I	concept of single linkage, Non-polar and		Video
(Lowis Theory)	Polar covalent bonds Hanny and Smyth		presentation.
(Lewis Theory)	equation.	3	
	c)Dipole moment, application of dipole		
	moment, Fajan's rule, Metallic bond		
IV	a)Linnet's Double – Quartet (D-Q) theory,	3	РРТ
	VSPER Theory, Valence Bond Theory.		presentation,
	b) Resonance, Resonance energy,	3	Chalk and Talk,
Chemical	Resonance structure of CO ₂ , NO ₂ , NO ₃ ,		Video
Bonding-II	$CO_3^{2^2}$,ions.	3	presentation

Lesson Plan

(Orbital Concept)	c) Hybridisation - AB ₆ , AB ₅ (lp), AB _{4(lp)2} , AB ₄ , , AB ₃ (lp), AB ₂ (lp) ₂ , AB(lp) ₃ type with examples.					
	a) Arrhenius Concept, Proton transfer theory, Concept of Lowry - Bronsted,	3				
V	Concept. b)Solvent- System Concept, Lewis	3	PPT presentation, Chalk and Talk.			
Acids And Bases	Concept, Relative strength of acids and bases.c) Hard and Soft acids and bases, Pearson's concept, HSAB Principle and its applications.	3	Video presentation			
Course designed by, Mr.T.Srinivasan, Mrs. S.Sulochana						

Programme	B.Sc/B.A/B.Com	UCH					
Course Code	20UCHN11	Number of Hours/Cycle	2				
Semester	Ι	Max. Marks	100				
Part	IV	Credit	2				
	Non Major Elective Course I						
Course Title Industrial Chemistry							
Cognitive Level - Upto K3							

The course enables the students to gain knowledge on concepts of chemistry and its significant impacts on industries.

Unit I Milk and Milk Products Industry

Milk - Composition of Milk, flavor and aroma of milk - Physical properties of milk, Effect of heat on milk - Pasteurization and methods - Homogenisation and advantages - Milk products- manufacturing process of cream, Butter, Ice cream, Milk Powder.

Unit II Agricultural Industry

Nutrients for plants - Major and minor nutrients - Role of NPK - Classification of fertilizers - Nitrogenous fertilizer - Urea - Potash fertilizer - potassium nitrate - Phosphate fertilizer - Super Phosphate - Complex fertilizer - Mixed fertilizers.

Pesticides - classification of pesticides - Insecticides - preparation and uses of DDT and BHC – Health hazards of pesticides

Unit III Polymer Industry

Rubber - Natural and Synthetic rubber -difference and examples (Structure not necessary) - Distinguish between addition and condensation polymers - Vulcanization of rubber - Plastic - difference between Thermo and Thermosetting plastics. - Important plastics - preparation, properties and uses of PVC, Nylon - 66, Teflon, Bakelite -Synthetic rubber - preparation, properties and uses of Butyl rubber and styrene butadine rubber(SBR).

Unit IV Petrochemical Industry

Crude oil - Refining of crude oil - Separation of water (Cottrell's process), Removal of Sulphur compounds and Fractional distillation of crude oil - Kerosene oil -Gasoline - octane number - Aviation gasoline - Diesel - cetane number - comparison of gasoline and diesel oil - Natural gas - LPG - CNG. 6 Hours

Unit V Nuclear Power Plants

Nuclear Power plants in India - Nuclear fuels - Difference between nuclear fission and nuclear fusion - Distinguish between nuclear reaction and chemical reaction -Concepts of Nuclear fission and Nuclear reactor - components of nuclear reactor - energy production - Nuclear waste disposal and hazards. Visit to various nearest industries and submission of report

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations, Industrial visit.

Text Book

1.Sharma.B.K., (2016), Industrial Chemistry (Including Chemical Engineering), Goel Publishing House, Meerut

Reference Books:

1.BagavathiSundari.K.,(2007), Applied Chemistry, S.Chand, New Delhi

- 2.Jaya Shree Ghosh., (2008), Fundamental concepts of applied chemistry, S.Chand, New Delhi
- 3. Jain and Jain., (2005), Engineering chemistry, DhanpatRai Publications Pvt. Ltd., New Delhi.

E- Resources

- https://bakerpedia.com/processes/pasteurization/
- http://www.aau.in/library-services-dr-m-d-patel-regional-e-library
- https://www.thomasnet.com/articles/plastics-rubber/thermoset-vs-thermoplastics/

6 Hours

6 Hours

6 Hours

- https://www.leamericas.com/en/technologies/petrochemical/petrochemicalcomponents/index.html.
- https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-waste/storage-and-disposal-of-radioactive-waste.aspx.

Course outcomes

On the successful completion of the course, students will be able to	to
--	----

CO 1	Analyse the physico – chemical changes in milk due to Boiling and Pasteurization
CO2	Recognize the chemical compounds used in Fertilizers and Pesticides
CO3	Explain the physical, chemical properties and their application of polymers
CO4	Identify and outline the characteristics, Properties and uses of Crude oil
CO5	Compare and explain the nuclear and Chemical reactions

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B
			Either/or (Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	(K1& K1)	1(K2)
2	CO2	Up to K2	2	(K1 & K1)	1(K2)
3	CO3	Up to K3	2	(K2& K2)	1(K3)
4	CO4	Up to K3	2	(K2 & K2)	1(K3)
5	CO5	Up to K3	2	(K2& K2)	1(K3)
No. of Questions to be asked		10		5	
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total Marl	ks for each Se	ection	15		15

On the successful completion of the course, the students will be able to gain knowledge on concepts of Chemistry and its impacts on Industries

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section wise with his and he levels								
K Levels	Section A (Either or Choice)	Section B (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)			
K1	12	-	12	21.82	22%			
K2	18	10	28	50.91	51%			
K3	-	15	15	27.27	27%			
Total Marks	30	25	55	100	100%			

Distribution of Section-wise Marks and K Levels

	Lesson Plan		
Unit	Description	Hours	Mode
I Milk and Milk Products Industry	 a)Milk - Composition of Milk, flavor and aroma of milk - Physical properties of milk, Effect of heat on milk. b) Pasteurization and methods, Homogenisation and advantages and Milk products- manufacturing process of cream, Butter, Ice cream, Milk Powder. 	3	 Chalk and talk Power point presentation
II Agricultural Industry	 a)Nutrients for plants – Major and minor nutrients – Role of NPK – Classification of fertilizers - Nitrogenous fertilizer – Urea - Potash fertilizer – potassium nitrate - Phosphate fertilizer – Super Phosphate – Complex fertilizer - Mixed fertilizers. b) Super Phosphate, Complex fertilizer, mixed fertilizers. Pesticides, classification of pesticides, Insecticides, preparation and uses of DDT and BHC and Health hazards of pesticides. 	3	 Chalk and talk Power point presentation Seminar Group discussion
III Polymer Industry	 a)Rubber - Natural and Synthetic rubber – difference and examples (Structure not necessary) – Distinguish between addition and condensation polymers – Vulcanization of rubber – Plastic - difference between Thermo and Thermosetting plastics. b) Important plastics – preparation, properties and uses of PVC, Nylon – 66, Teflon, Bakelite – Synthetic rubber - preparation, properties and uses of Butyl rubber and styrene butadine rubber(SBR). 	3	 Chalk and talk Power point presentation Seminar Group discussion
IV Petrochemical Industry	 a)Crude oil – Refining of crude oil – Separation of water (Cottrell's process), Removal of Sulphur compounds. b) Fractional distillation of crude oil – Kerosene oil - Gasoline – octane number - Aviation gasoline - Diesel - cetane number - comparison of gasoline and diesel oil. c)Natural gas – LPG – CNG. 	2 2 2 2	 Chalk and talk Power point presentation Seminar
V Nuclear Power Plants	 a)Nuclear Power plants in India – Nuclear fuels – Difference between nuclear fission and nuclear fusion. b) Distinguish between nuclear reaction and chemical reaction - Concepts of Nuclear fission and Nuclear reactor, components of nuclear reactor and energy production. 	2 2 2	 Chalk and talk Power point presentation

Course Designed by, Dr. A.Sahaya Raja

Programme	B.Sc	UCH						
Course Code	20UCHC21	Number of Hours/Cycle	3					
Semester	II	Max. Marks	100					
Part	III	Credit	3					
	Core Course III							
Course Title Physical Chemistry-I								
Cognitive level – Upto K3								

The course enables the students to learn and understand the surface phenomena and matter behaviour in liquid, colloid and gaseous state. 9 Hours

Unit I Gaseous State

Postulates of kinetic theory of gases-Derivation of Ideal gas laws from the expression on the basis of kinetic theory of gases- deviations- equation of state- reduced equation of state-law of corresponding states-compressibility factor for gases- Boyle and inversion temperature of gases- PV isotherm of ideal and real gases- Andrew's experiments- critical state of gases-Determination of critical constant.

Unit II Colloidal State

Colloids- colloidal state of matter- various types-classification-Solids in liquids(sols)- properties- kinetics- optical and electrical- stability of colloids and protective action- Hardy Schulze law- gold number- Hofmeister series Liquids in liquids(emulsion)- types of emulsion- emulsifier with suitable examples

Liquids in solids(gels)- classification- preparation- properties- thixotropy- synergists and inhibition- Donnan membrane equilibrium – application of colloids- Determination of size of colloidal particles.

Unit IIILiquid State

Nature of cohesive forces in liquids - Trouton's rule and its significance.Physical properties and chemical constitution .Molar volume and its application.Surface tension – influence of temperature on surface tension - Parachor - atomic and structural Parachors applications.Viscosity - influence of temperature on viscosity - relation to chemical constitution - molecular viscosity - atomic and structural viscosity - Rheochor.Refraction - refractive index - specific refractive index - molar, atomic and structural refraction applications – liquid crystal – their application. 9 Hours

UnitIV Adsorption

Definition of various terms - adsorption of gases on solids - characteristics of adsorption of gases on solids – physical adsorption and chemisorptions – factors influencing adsorption - adsorption isotherm - Freundlich adsorption isotherm, Langmuir adsorption isotherm, BET theory of multilayer adsorption– applications of adsorption.

Unit V Catalysis

9 Hours

Definition - characteristics - theories of catalysis - promoters and poisons enzyme catalysis - mechanism - Michaleis - Menten equation acid - base catalysis and autocatalysis - application of catalysis- pH-dependence of rate constants of catalyzed reactions- Effect of temperature on enzyme catalysis.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

1. Puri, Sharma and Pathania, (2015), Principles of Physical Chemistry, Vishal Publishing Co.47th Edition, (2015)

2. Bahl.B.S, ArunBahl(2005), Essentials of Physical chemistry, S.Chand and company Ltd. **Reference Books**

1.A.W.Adamson.,(1982)Physical Chemistry of surfaces, Wiley publications,

2. Soni.P.L., (2013), Text book of Physical Chemistry, Sultan Chand & Sons

3. Peter-W. Atkins, (2010), Physical Chemistry, Oxford University Press, 9th edition

4. Glasstone S.,(1948)'A Textbook of Physical Chemistry".

E-Resources

https://www.pnas.org/content/108/3/917-

• https://www.emedicalprep.com/study-material/chemistry/surface-chemistry/

9Hours

- http://www.chm.bris.ac.uk/webprojects2002/pdavies/what.html-
- https://www.britannica.com/science/colloid
- https://www.khanacademy.org/science/chemistry/chem-kinetics
- http://butane.chem.uiuc.edu/pshapley/genchem1/L17/1.html
- https://www.grandinetti.org/gaseous-state.

Course outcomes

On completion of the course, students will be able to

CO1	Define and explain gas laws, its deviations from ideal behaviour.
CO2	Explain the various phenomenons involved in colloidal state.
CO3	Interpret the physical behaviour of liquids.
CO4	Catagorize the concept of adsorption in various areas.
CO5	Relate the importance of catalytic activities.

	mapping of Fregramme outcomes with Course Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	2	1	1	2	1	1
CO2	2	2	2	2	2	2	2	2	1	2	1	1
CO3	3	3	2	2	2	2	2	2	1	3	1	1
CO4	3	3	3	2	2	2	2	2	1	2	1	1
CO5	2	3	3	2	2	2	2	2	1	2	1	1
1-Lov	W	2-N	Iodera	te		3-High	1					

Mapping of Programme outcomeswith Course Outcomes

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	K2
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	K2
3	CO3	Up to K3	2	K1 & K2	2(K2 & K2)	K3
4	CO4	Up to K3	2	K1 & K2	2(K3 & K3)	K3
5	CO5	Up to K3	2	K1 & K2	2(K2& K2)	K3
No. of Questions to be asked			10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total N	Marks for	each Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

	Distribution of Section wise wind in Levels									
K Levels	Section A Section I		ction B Section C Tota		% of Marks	Consolidated				
	(No	(Either/or)	(Open	Marks	without	(Rounded				
	Choice)		choice)		choice	off)				
K1	5	-	-	5	5%	5%				
K2	5	32	20	57	57%	57%				
K3	-	8	30	38	38%	38%				
Total Marks	10	40	50	100	100%	100%				

Lesson Plan

Unit	Description	Hours	Mode
Ι	A)Postulates of kinetic theory of gases-	3	РРТ

Gaseous	Derivation of Ideal gas laws from the		presentation,
State	expression on the basis of kinetic theory of		Chalk and Talk,
	gases- deviations.	3	Video
	B) Equation of state- reduced equation of		presentation
	state-law of corresponding states-		-
	compressibility factor for gases- Boyle and	3	
	inversion temperature of gases.		
	C) PV isotherm of ideal and real gases-		
	Andrew's experiments- critical state of gases-		
	Determination of critical constant.		
-	A) Colloids- colloidal state of matter- various	3	
	types-classification-Solids in liquids(sols)-		
	properties- kinetics- optical and electrical-		
	stability of colloids and protective action.		
	B) Hardy Schulze law- gold number-	3	РРТ
п	Hofmeister series	-	presentation.
Colloidal	Liquids in liquids(emulsion)- types of		Chalk and Talk.
State	emulsion- emulsifier with suitable examples.		Video
	C) Liquids in solids(gels)- classification-		presentation
	preparation- properties- thixotropy- synergists	3	I
	and inhibition- Donnan membrane		
	equilibrium – application of colloids-		
	Determination of size of colloidal particles.		
	A)Nature of cohesive forces in liquids –	3	
	Trouton's rule and its significance. Physical		
	properties and chemical constitution .Molar		
	volume and its application. Surface tension.		
	B)Influence of temperature on surface tension		DDT
	– Parachor – atomic and structural Parachors		PPT
	– applications. Viscosity – influence of	3	presentation,
Liquid	temperature on viscosity – relation to		Chalk and Talk,
State	chemical constitution - molecular viscosity –		Video
	atomic and structural viscosity.		presentation.
	C) Rheochor.Refraction – refractive index –	3	
	specific refractive index – molar, atomic and		
	structural refraction – applications – liquid		
	crystal – their application.		
	A)Definition of various terms – adsorption of	3	
	gases on solids – characteristics of adsorption		
	of gases on solids.		PPT
TT 7	B)Physical adsorption and chemisorptions –	3	presentation,
	factors influencing adsorption – adsorption		Chalk and Talk,
Adsorption	isotherm – Freundlich adsorption isotherm.		Video
	C) Freundlich adsorption isotherm, Langmuir	3	presentation
	adsorption isotherm, BET theory of multilayer		-
	adsorption- applications of adsorption.		
	A)Definition – characteristics – theories of	3	
	catalysis – promoters and poisons – enzyme		
	catalysis – mechanism.		РРТ
X 7	B) Michaleis – Menten equation acid –	3	presentation,
V Cotol-sia	basecatalysis and autocatalysis – application		Chalk and Talk,
Catalysis	of catalysis.		Video
	C) pH-dependence of rate constants of	3	presentation
	catalyzed reactions- Effect of temperature on		-
	enzyme catalysis.		

Programme	B.Sc	Programme code	UCH		
Course	20UCHC22	Number of Hours/cycle	3		
Semester	II	Max.Marks	100		
Part	III	Credit	3		
Core Course IV					
Course	Course Organic Chemistry - II				
Cognitive level Upto K3					

This course mainly deals with mechanism of nucleophilic substitution, elimination reaction and heterocyclic compounds. 9 Hours

Unit I: Nucleophilic Substitution

Nucleophilic substitution reaction mechanisms (with evidence), relative rates & stereochemical features: S_N1, S_N1', S_N2,S_N2' (allylic rearrangement) and S_Ni; effects of solvent, substrate structure, leaving group and nucleophiles substitutions involving NGP; role of crown ethers and phase transfer catalyst. 9 Hours

UnitII: Elimination Reactions

Elimination reactions: E1, E2, E1CB and Ei formation of alkenes and alkynes; mechanisms, reactivity, regioselectivity and stereoselectivity; comparison between substitution and elimination; importance of Bredt's rule relating to the formation of C=C. 9 Hours

Unit III:Carbonyl and Related Compounds

General methods of preparation of carbonyl compounds by oxidation reactions, By heating calcium salts of carboxylic acids - Reactivity of carbonyl compounds: Nucleophilic addition reactions Reaction with HCN, Wittings reaction, Reformsky reaction - Oxidation reactions, Reduction reactions Meerwein-Ponndorf-Verley reduction, Wolf-Kishner reduction, Clemmensen reduction.

Unit IV:Heterocyclic Compounds I

General classification-aromatic and non-aromatic heterocyclics. Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine.Preparation, properties and uses of furan, pyrrole &thiophene.Synthesis and reactions of pyridine comparative studyof basicity of pyrrole, pyridine with amines.

Unit V: Heterocyclic Compounds II

Condensed five and six membered heterocyclics-preparation

ofindole, quinolineandisoquinoline-Fischer indole synthesis, Skraup synthesis and Bischer-Napieralski synthesis-Electrophilic substitution reactions.Ureides and Nucleic

acidsUreides-classification-pyrimidines-thymine, uracil and cytosine-purines-adenine and guanine - synthesis.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

- 1. Soni.P.L., (2019), Text book of Organic Chemistry, Sultan Chand & Sons
- 2. Bahl.B.S., ArunBahl(2019), Essentials of Physical chemistry, S.Chand and company Ltd.

Reference Books

- 1. ArunBahl and Bahl.B.S., (2019), Text Book for Organic ChemistryS.Chand& Company Ltd, New Delhi .
- 2. Jerry March, (2015), Reaction Mechanism of Organic compounds. Wiley, India Edition7th

R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2011), Organic Chemistry, Pearson

Publishers, New Delhi, 7th Ed.,

E-Resources :

- https://chem.libretexts.org/ •
- https://libguides.reading.ac.uk/chemistry/e-resources.
- https://onlinelibrary.wiley.com/series/1079

9 Hours

- https://libguides.library.usyd.edu.au •
- https://global.oup.com •

Course outcomes

On completion of the course, students will be able to

CO1	Explain the mechanism of Nucleophilic substitution reactions				
CO2	Recall and demonstrate the Elimination reactions and importance of Bredt's rule				
CO3	Explain the reactivity of Carbonyl compounds				
CO4	Compare and Describe the synthesis of five membered Heterocyclic compounds				
CO5	Classify and describe synthesis of Six membered Heterocyclic compouds				
	Mapping of Programme outcomes with Course Outcomes				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	1	1	2	1	1	1	1	1
CO2	2	2	2	2	1	1	1	1	1	1	1	1
CO3	2	1	2	2	1	2	1	2	1	1	1	1
CO4	1	1	3	2	1	2	1	3	1	1	1	1
CO5	1	2	3	2	2	2	1	1	1	1	1	1
1-Lov	W	2-N	Iodera	ite		3-High	1					

2-Moderate 3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	COs	K-Level	No. of	K-Level	No. of	No. of
			Questions	K-Level	Questions	Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	K2
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	K2
3	CO3	Up to K3	2	K1 & K2	2(K2& K2)	K3
4	CO4	Up to K2	2	K1 & K2	2(K2 & K2)	K2
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	K3
No. of Questions to be asked			10		10	5
No. of Questions to be			10		5	3
answered						
Marks for each Question			1		4	10
Total Ma	rks for eac	h Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5	5%
K2	5	40	30	75	75	75%
K3	-	-	20	20	20	20%
Total Marks	10	40	50	100	100	100%

	Lesson Plan		
Unit	Description	Hours	Mode
	a)Nucleophilic substitution reaction	2	
	mechanisms (with evidence), relative rates		
	& stereochemical features: $S_N 1$ and $S_N 2$		
	b) Nucleophilic substitution reaction	2	
	mechanisms (with evidence) relative rates &	_	Chalk and
	stereochemical features: Sull and Su2!		talk Dower
Nucleanhilie	S(c) (c)	1	taik, I Owei
Substitution	d) Effects of columnt, substrate structure	1	point
Substitution	d) Effects of solvent, substrate structure,	1	presentation
	e)Leaving group and nucleophiles	1	
	substitutions involving NGP;	1	
	I) Role of crown ethers and phase transfer	2	
	catalyst.		
	a)Elimination reactions: Introduction		
	b) Formation of alkenes and alkynes;	1	
п	E1, E2, E1cB and Ei mechanisms,	3	Chalk and
11	c)reactivity, regioselectivity and		tally Dower
	stereoselectivity.	2	taik, Power
Elimination	d) Comparison between substitution and	1	point
Reactions	elimination:		presentation
	e)importance of Bredt's rule relating to the	2	
	formation of C=C bond.	_	
	a)General methods of preparation of carbonyl		
	compounds Preparation by oxidation	2	
	reactions heating calcium salts of carboxylic		Chalk and
	neating calcium saits of carboxyne		talk, Power
III	b) Departivity of carbonyl compounds	2	point
	b) Reactivity of carbonyl compounds.		presentation
Carbonyl	Nucleophilic addition reactions.	1	*
and Related	c)Reaction with HCN, Wittings reaction.	1	
Compounds	d) Reformsky reaction.	1	
compounds	e)Reduction reactions, Meerwein-Ponndorf-	_	
	Verley reduction.	1	
	f) Wolf-Kishner reduction	1	
	g) Clemmensen reduction.	1	
	a)General classification-aromatic and non-	2	
	aromatic heterocyclic compounds.		
TT	b) Molecular orbital diagram and	2	
	aromatic characteristics of pyrrole, furan,		Chalk and
II.4	thiophene and pyridine.	3	talk, Power
Heterocyclic	c)Preparation, properties and uses of furan,		point
Compounds	pyrrole & thiophene.	1	presentation
I	d) Synthesis and reactions of pyridine	1	presentation
	e)Comparative studyof basicity of pyrrole	-	
	pyridine with amines		
	a) Condensed five and six membered heterocyclic	1	
	compounds.	1	
	b) preparation	2	
V	ofindole,quinolineandisoquinoline.	$\frac{1}{2}$	Chalk and talk,
	c) Fischer indole synthesis. Skraup synthesis.	1	Power point
Heterocyclic	d)Bischer-Napieralski synthesis.	1	presentation,
Compounds	e) Electrophilic substitution reactions.	2	Group
	f) Ureides and Nucleic acids: Ureides-	_	Discussion
	classification-pyrimidines-thymine, uracil and		
	cytosine-purines-adenine and guanine.		

Course Designed by, Mr. S.Kannan, Mrs. K. Rathika,

Programme	B.Sc chemistry	Programme Code	UCH	
Course Code	20UCHC2P	Number of Hours/Cycle	2	
Semester	II	Max. Marks	100	
Part	III	Credit	2	
Core Practical I				
Course Title Inorganic Semimicro Qualitative Analysis				
Cognitive level- K4				

The lab course describes the systematic analysis of acid and basic radicals present in a given inorganic compound and also develops the qualitative analysis skill of the students

Analysis of a mixture containing two anions of which one is an interfering ion and two cations - Semi-micro method.

Anions: Carbonate, sulphate, nitrate, fluoride, chloride, bromide, oxalate, borate, phosphate, and chromate.

Cations: Lead, bismuth, copper, cadmium, antimony, iron (II & III), aluminium,

zinc, manganese, cobalt, nickel, barium, strontium, calcium, magnesium and ammonium.

Course outcomes

On the successful completion of the course, students will be able to

CO1	Analyse the acid radicals present in any given inorganic salt and to identify them
CO2	Determine the interfering acid radicals
CO3	Analyse the acid and basic radical systematically
CO4	Identify and report the radicals systematically and its group

Pedagogy

Chalk and Talk method, Hands on Training, PowerPoint Presentations, demonstration. Distribution of Marks (Max. marks – 100)

40

			(,
Performance in the class	: 10 marks			Int :
Regular Test in the class	: 20 marks			
Observation notebook	: 10 marks			
Total	: 40 marks			
Viva voce		-	10 marks	
Ext: 60				
Record Note book		-	10 marks	
Four radicals with correct pro-	ocedures (4 x 10)	-	40 marks	
	TOTAL		-60 marks	

Programme	B.Sc/B.A/B.Com	Programme Code	UCH		
Course Code	20UCHN21	Number of Hours/Cycle	2		
Semester	II	Max. Marks	100		
Part	IV	Credit	2		
Non Major Elective Course II					
Course Title	Chemistry of Drugs	5			
Cognitive level Upto K3					

The course enables the students to gain knowledge on chemistry of drugs and biological role of vitamins and minerals.

Unit I Drugs

Importance of drugs – drugs used in diagnosis, preventing and curing of diseases – Important terminologies, their meaning – Names of drugs – Bacteria – Types of bacteria, virus, fungi.

Unit II Antibiotics

Definition – Classification – Drug action and side effects of Antibiotics – Important antibiotics - Ampicillin, streptomycin, tetracycline, Rifomycin, Erythromycin (Structure not necessary) – therapeutic uses and side effects.

Unit III Synthetic Drugs

Antipyretics and Analgesics – Classification - Important synthetic drugs -Paracetamol, Aspirin and Ibuprofen (Structure not necessary) - therapeutic functions.

Anti-inflammatory agents – Sulpha drugs – drug actions - Sulphadiazine and prontosil (Structure not necessary) – therapeutic uses - pain balm

Unit IV Anaesthetics

Anaesthetics - Definition – Mode of Action – Classification - General Anesthetics – Inhalation anaesthetics – Definition – Mode of action – Cyclopropane and Haloethane – Therapeutic uses - Intravenous anaesthetics – Definition – Thiopental Sodium, Methohexitone and Propanidid –therapeutic uses.

Local anaesthetics – Mode of action – Classification – Natural local anaesthetics – Cocaine – Therapeutic uses – Synthetic local anaesthetics – Procaine, Amethocaine, Benzocaine and Lignocaine – therapeutic uses.

Note: Therapeutic uses only and Structure not necessary

Unit V Vitamins and Minerals

Visit to various nearest industries and submission of report

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

- 1. Jaya Shree Ghosh.,(2008), *Fundamental concepts of applied chemistry*, S.Chand, New Delhi
- 2. JayashreeGhosh .,(2010), *A Text book of Pharmaceutical Chemistry*, S. Chand , New Delhi.

Reference Books

- 1. Sharma.B.K.,(2016),*Industrial Chemistry (Including Chemical Engineering)*, Goel Publishing House, Meerut
- 2. BagavathiSundari.K., (2008), Applied Chemistry, MJP Publishers, Chennai
- 3. Lakshmi.S.,(2004), A Textbook of Pharmaceutical Chemistry, S.Chand, NewDelhi.
- 4. JayashreeGhosh .,(2010), *A Text book of Pharmaceutical Chemistry*, S. Chand ,New Delhi.

6 Hours

6 Hours

6 Hours

6 Hours

5. PrakashG.,More,(2010),*Comprehensive Industrial Chemistry*, PragatiPrakashan Educational Publishers, Meerut

E-Resources

- https://www.foodsafety.ca/blog/4-types-cleaning-agents-and-when-use-them
- https://dermnetnz.org/topics/antibiotics/
- https://www.psychiatry.org/psychiatrists/education/signatureinitiatives/model-curriculum-project-for-substance-use-disorders/basicprinciples-of-synthetic-drugs
- https://www.drugs.com/drug-class/general-anesthetics.html.
- https://www.nccih.nih.gov/health/vitamins-andminerals#:~:text=Vitamins%20and%20minerals%20are%20essential,%2C%2 0and%20folate%2Ffolic%20acid.

Course outcomes

On the successful completion of the course, students will be able to

CO 1	Define drug and explain the basic idea of terminologies of different drugs
CO2	Determine and compare the different types of antibiotics
CO3	Classify and point out the analgesics, antipyretics and anti-inflammatory agents and their actions
CO4	Classifydifferent kinds of anaesthetics and List out the therapeutic uses of anaesthetics
CO5	Explain the Biological role of Vitamins and Minerals

Articulation Mapping-K Levels with Course Outcomes (COs)

			Section A		Section B
			Either/ or choice		(Open Choice)
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K1	1(K2)
2	CO2	Up to K3	2	K2 & K2	1(K3)
3	CO3	Up to K2	2	K1 & K1	1(K2)
4	CO4	Up to K3	2	K2 & K2	1(K3)
5	CO5	Up to K3	2	K2 & K2	1(K3)
No. of Questions to be asked			10		5
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total M	arks for each	Section	15		15

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (Either/or choice)	Section B (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	12	-	12	21.8	22%
K2	18	10	28	50.9	51%
K3	-	15	15	27.2	27%
Total Marks	30	25	55	100	100%

Lesson Plan

Unit	Description	Hours	Mode
	a)Importance of drugs – drugs used in	3	Challs and
I	diagnosis, preventing and curing of diseases.		talk Power
	b) Important terminologies, their meaning	3	taik, rowei
Drugs	- Names of drugs - Bacteria - Types of		point
	bacteria, virus, fungi.		presentation

	a)Definition – Classification – Drug action and	2	
	side effects of Antibiotics – Important	-	Chalk and
II	antibiotics	4	talk Power
	b) Amnicillin streptomycin tetracycline		noint
Antibiotics	Rifomycin Erythromycin (Structure not		point
	necessary) – therapeutic uses and side effects		presentation
	a) Antipyretics and Analgesics – Classification –	3	
	Important synthetic drugs - Paracetamol	5	
тт	Aspirin and Iburrofon (Structure not		Chalk and
111	necessary) therapeutic functions		talk Power
Synthetic	b) Anti inflammatory agents Sulpha	3	noint
Drugg	drugs drug actions Sulphadiazing and	5	point
Drugs	arugs – arug actions - Sulphadiazine and		presentation
	therepoutie uses pain halm		
	a) Appartmention Definition Mode of Action	4	
	a)Anaesthetics - Deminition – Mode of Action –	4	
	Inhelation encosthation Definition Mode of		
	action Qualenronana and Halosthana		
	Theremoutic uses Introvenous encost that is		
TV/	Definition Thiopental Sodium		Challs and
1 V	Methohavitana and Propanidid therepoutia		telle Dower
Anosthation	Methonexitone and Propanicic – inerapeutic	2	talk, Power
Anaestnetics	uses. b) Local appartition Mode of action	Z	point
	Classification Natural local apposthatics		presentation
	Cooping Thereportic uses Synthetic local		
	Cocalle – Therapeutic uses – Synthetic local		
	Anaesthetics – Procane, Amethocane,		
	Benzocame and Eignocame – merapeutic		
	a) Definition Classification of Vitaming	2	
	Physiological function of Vitaming	2	
	b) Eat Soluble Vitamins (Structure not	2	
	necessary) Vitamin A Vitamin D Vitamin E	2	
V	and Vitamin K source deficiency diseases		Chalk and
	therapeutic uses		talk Power
Vitamins	c)Water soluble Vitamins(Structure not	2	noint
and	necessary) - Vitamin B Complex (B ₁ B ₂ B ₂	2	presentation
Minerals	Folic acid $B_5 B_6 B_{12}$) Vitamin C – source –		Presentation
	deficiency diseases – therapeutic uses –		
	Minerals and Trace elements – Biological		
	Role.		

Course Designed by, Dr.A.Sahaya Raja.

Programme	B.Sc	Programme Code	UCH					
Course Code	20UCHA11	Number of Hours/Cycle	4					
Semester	Ι	Max. Marks	100					
Part	III	Credit	4					
Allied Course I								
Course Title	Course Title Inorganic and Organic Chemistry							
Cognitive level up to K3								

The Course provides the basic concepts of atomic structure, hardness of water, chemical bonding, types of organic reactions, classification and biological function of proteins, amino acids.

Unit I Atomic structure and Periodic properties

Atom- Atomic number- Quantum numbers - Arrangement of elements in periodic table-Electronic configuration (upto Z=30)- Definition- atomic size, Ionization energy, electro affinity, electro negativity.

Unit IIWater & classification of Oxides

Oxides: Definition - classification based on chemical behaviour and oxygen content- examples.

Water: Hardness of water - types of hardness - removal of hardness - industrial implications of hardness in water - estimation by EDTA method (outline only) units of hardness of water.

Unit IIIChemical Bonding

VB. Theory – postulates of VB. theory – application to the formation of simple molecules like H₂ and O₂ - overlap of atomic orbitals - s-s, s-p and p-p overlap - principle of hybridization - sp, sp² and sp³ hybridization - VSEPR theory.

Unit IV Basics of Organic Chemistry

Type of reactions: substitution $(S_N 1 \text{ and } S_N 2)$ – addition – elimination (E1 and E2) - rearrangement and polymerization - illustration with examples

Reaction intermediates- Definition, types and examples - specific reactions involving these-.detection and estimation of nitrogen and halogens in organic compounds **12 Hours**

Unit V Chemistry of Bio Molecules

Classification - synthesis - properties of aminoacids - polypeptides - proteins classification and biological functions-introduction and classification of carbohydrates-D/L configuration-manufacture of glucose and fructose.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

1. Puri and Sharma, (2016), Text Book for Inorganic Chemistry, S. Chand & company Ltd. New

Delhi.

2.Soni. P.L., (2016), Text Book for Organic Chemistry, S. Chand & Company Ltd, New Delhi.

Reference Books

1. Jerry March, (2015), Reaction Mechanism of Organic compounds. Wiley, India Edition7th

2.Lee. J.D., (2011), Concise Inorganic Chemistry, Wiley India (P) Ltd, New Delhi.

3.R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2011), Organic Chemistry, Pearson

Publishers, New Delhi, 7th Ed.,

4.F. Albert Cotton, Geoffrey Wilkinson and Paul L. Gaus, (2007) Basic Inorganic Chemistry,, Wiley India Pvt. Ltd. 3rd Ed., .

E-Resources

- https://www.twinkl.co.in/resource/t4-sc-1050-aqa-gcse-atomic-structure-and-theperiodic-table-lesson-7-electronic-structure
- https://edu.rsc.org/resources/testing-the-hardness-of-water/426.article

12 Hours

12 Hours

12 Hours

- https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Modules_and_Websit es_(Inorganic_Chemistry)/Chemical_Compounds/Introduction_to_Chemical_Bondi ng
- https://chem.libretexts.org/Bookshelves/General Chemistry/Map%3A General Ch emistry_(Petrucci_et_al.)/27%3A_Reactions_of_Organic_Compounds/27.08%3A_ Polymers_and_Polymerization_Reactions
- https://faculty.weber.edu/sharley/2104/chemistry-molecules.htm

Course outcomes

On successful completion of the course, students will be able to

C01	Explain the basic concepts of atomic structure and periodic properties
CO2	Causes of hardness and estimate the hardness of water
CO3	Demonstrate the VSEPR theory and Classify the chemical bonding.
CO4	Classify the types of electrophiles and nucleophiles and their organic reactions
CO5	Apply the biological functions of amino acids and proteins

Mapping of Programme outcomes with Course Outcomes

				8								
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	2	1	1	1	1	1	1	1	1	1	1
CO2	2	2	1	1	2	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1
1-Lo	W	2-1	Moder	ate	•	3-Hig	h	•	•	•	•	•

2-Moderate

3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	COs	K-Level	No. of K-Level		No. of	No. of
			Questions	II Lever	Questions	Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
3	CO3	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
No. of	Questions	to be asked	10		10	5
No. of Questions to be			10		5	3
answered						
Marks for each Question		1		4	10	
Total N	Marks for e	ach Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers **K3-**Application oriented-Solving problems

K4-Examining, analyzing, presentation and make inferences with evidences

	Distribution of Section-wise what is and K Levels									
K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated				
	(No	(Either/or)	(OpenChoice)	Marks	without	(Rounded				
	Choice)				choice	off)				
K1	5	-	-	5	5%	5%				
K2	5	40	20	65	65%	65%				
K3	-	-	30	30	30%	30%				
Total Marks	10	40	50	100	100%	100%				

Distribution of Section-wise Marks and K Levels	Distri	bution	of	Section	-wise	Mark	s and	ΚI	Levels
---	--------	--------	----	---------	-------	------	-------	----	--------

Lesson Plan									
Unit	Description	Hours	Mode						
	a) Introduction to Atom- Atomic	3							
Ι	number	2							
	b) Quantum numbers and types	3	Chalk and						
Atomic	c)Arrangement of elements in periodic table	2	talk, Power						
structure and	d) Electronic configuration (upto	2	point						
Periodic	Z=30)		presentation						
properties	e)Definition- atomic size, Ionization energy,		•						
	electro affinity, electro negativity.								
	a)OxidesDefinition, classification with	3							
II	examples.	3							
	b)Types of hardness and causes	3	Chalk and						
Water &	a)Removable of hardness	3	talk, Power						
classification of	b) Industrial implications of hardness		point						
Oxides	in water, Units of hardness of water and		presentation						
	Estimation by EDTA method.								
	a)Introduction and postulates of valance	3							
	bond theory.								
III	b) Application to the formation of	3	Chalk and						
	simple molecules like H_2 and O_2 .		talk, Power						
Chemical	c)Overlap of atomic orbitals – s-s, s-p and p-	3	point						
Bonding	p overlap and principle of hybridization –		presentation						
0	sp, sp^2 and sp^3 hybridization.		•						
	d) VSEPR theory.	3							
	a)Substitution (S_N1 and S_N2) – addition –	3							
TT 7	elimination (E1 and E2).								
IV	b) Rearrangement and polymerization	3	Chalk and						
Destant	– illustration with examples.		talk, Power						
Basics of	c)Definition, types and examples – specific	3	point						
Organic	reactions involving these detection.		presentation						
Chemistry	d) Estimation of nitrogen and halogens	3	-						
	in organic compounds.								
	a)Classification, synthesis and properties of	3							
	amino acids.								
V	b) Polypeptides – proteins –	3	Chalk and						
	classification and biological functions.		talk, Power						
Chemistry of	c)Introduction and classification of	3	point						
Bio Molecules	carbohydrates-D/L configuration.		presentation						
	d) Manufacture of glucose and	3							
	fructose.								

Course Designed by, Mr. S.Kannan, Dr. M. Pandeeshwaran

Programme	B.Sc	Programme Code	UCH		
Course Code	20UCHA21	Number of Hours/Cycle	4		
Semester	II	Max. Marks	100		
Part	III	Credit	4		
	Alli	ed Course II			
Course Title	Inorganic and Physi	cal Chemistry			
Cognitive level Up to K3					

The course enables the students to gain knowledge on preparation and properties of Hydrogen and Hydrogen Peroxide, Nuclear Chemistry, Principles of Colloidal state, importance of Thermodynamics and Dynamics of Chemical Processes.

Unit I Hydrogen & Hydrogen Peroxide

Hydrogen : Isotopes of hydrogen – preparation, properties and uses of heavy hydrogen – ortho- and para-hydrogen – hydrides – definition – classification – examples Hydrogen peroxide– Manufacture, properties, structure and uses – estimation by permanganometry method – strength of hydrogen peroxide.

Unit II Nuclear Chemistry

Composition of the nucleus – nuclear forces – mass defect – binding energy – nuclear stability.Soddy's group displacement law – illustration – law of radioactive disintegration. Nuclear fission : Definition – theories of fusion – application of fission – the principle of atom bomb.Nuclear fusion : Definition – emission of energy – Stellar energy – hydrogen bomb.Application of radioactivity – In medicine, agriculture, industry and analytical fields – carbon dating.

Unit III Colloids

Colloidal state of matter – various types – classification.Sols – dialysis – electro osmosis – electrophoresis – stability of colloids – protective action – Handy Schulze law – gold number. Emulsion: Types of emulsions – emulsifier with examples. Gels: Classification, preparation Application of colloids.

Unit IV Thermodynamics

Importance of thermodynamics – terms used in thermodynamics – open and closed systems, state functions and path functions, extensive and intensive properties, reversible and irreversible processes, statement and mathematical form of first law of thermodynamics – heat capacity at constant volume and pressure, relation between C_p and C_v , Statement of II law of thermodynamics-entropy-Physical significance of entropy-Gibb's free energy and its significance.

Unit V Chemical Kinetics

Reaction rate – order and molecularity of a reaction – zero order – first order. First order rate equation derivative and half life period. Examples of first order reactions – second order reactions – examples. Carbon dating – enzyme catalysis – Michaelis and Menten mechanism.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

- 1. Soni, P.L., &Katyal, M.,(2019), *Text Book of Inorganic Chemistry*, Sultan Chand & Sons, New Delhi.
- 2. Bahl, A., Bhal. B.S., &G.D.Tuli,(2019), *Essentials of Physical Chemistry*, S. Chand Publishing Company, New Delhi.

Reference Books

- 1. Puri, Sharma and Pathania,(2019), *Principles of Physical Chemistry*, Vishal Publishing Co.47th Edition.
- 2. Lee. J.D, (2019), Concise Inorganic Chemistry, Wiley India (P) Ltd, New Delhi.
- 3. F. Albert Cotton, Geoffrey Wilkinson, Manfred Bochmann and Carlos Murilla, (2007) Advanced Inorganic Chemistry, 6th Ed., Wiley India Pvt. Ltd.
- 4. Peter Atkins, Julio de Paula, and James Keeler, (2017) Atkins' Physical Chemistry, Oxford University Press, UK 11th Ed.,

2 II......

12 Hours

12 Hours

12 Hours

12 Hours

E-Resources

- https://www2.lbl.gov/abc/wallchart/chapters/02/3.html
- https://www.sciencehq.com/chemistry/group-displacement-law-2.html
- https://www.sciencedirect.com/topics/materials-science/emulsion
- https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry

_The_Central_Science_(Brown_et_al.)/19%3A_Chemical_Thermodynamics/19.2 %3A_Entropy_and_the_Second_Law_of_Thermodynamics

• https://www.intechopen.com/books/introducing-the-effective-mass-of-activatedcomplex-and-the-discussion-on-the-wave-function-of-this-instanton/a-briefintroduction-to-the-history-of-chemical-kinetics

Course outcomes

On successful completion of the course, the students will be able to

CO1	Define the	preparation &	& properties	of hydrogen & H_2C	$\mathbf{)}_2$
001		propulation c	z properties	of figurogen a fige	12

CO2 Interpret the basic concept of nuclear chemistry

CO3 | Explain the various phenomena involved in colloidal state

CO4 Interpret the concept of law of thermodynamics and its properties

CO5 Describe order of reaction and enzyme catalysis

Mapping of Programme outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PS011	PSO12
CO1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	2	1	1	1	2	1	1	1	1	1	1	1
CO3	2	2	3	1	1	1	1	1	1	1	1	1
CO4	2	1	1	1	1	1	1	1	1	1	1	1
CO5	1	2	2	1	1	1	1	1	1	1	1	1

1-Low 2-Moderate 3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs		Either/or Choice	Open choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	K2
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	K2
3	CO3	Up to K3	2	K1 & K2	2(K2& K2)	K3
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	К3
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	K3
No. of Questions to be asked		10		10	5	
No. of Questions to be		o. of Questions to be			5	3
answered						
Marks for each Question		1		4	10	
Total Marks for each Section			10		40	50

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	20	65	65%	65%
K3	-	-	30	30	30%	30%
Total Marks	10	40	50	100	100%	100%

Distribution of Section-wise Marks and K Levels

T T •/	Lesson Plan	TT	
Unit	Description	Hours	Mode
	a)Isotopes of hydrogen, preparation,	3	
	properties and uses of heavy hydrogen, and		
I	ortho- and para-hydrogen.		Chalk and
	b) Hydrides definition and classification	3	talk Power
Hydrogen &	with examples.		noint
Hydrogen	c)Hydrogen peroxide – Manufacture,	3	nresentation
Peroxide	properties, structure and uses.		presentation
	d) Estimation by permanganometry	3	
	method – strength of hydrogen peroxide.		
	a)Composition of the nucleus, nuclear forces,	3	
	mass defect, binding energy and nuclear		
	stability.		
	b) Soddy's group displacement law,	3	
	illustration and law of radioactive		
II	disintegration.		Chalk and
	c)Nuclear fission: Definition - theories of	3	talk, Power
Nuclear	fusion – application of fission – the		point
Chemistry	principle of atom bomb.		presentation
	d) Nuclear fusion: Definition – emission	3	-
	of energy – Stellar energy – hydrogen		
	bomb. Application of radioactivity – In		
	medicine, agriculture, industry and		
	analytical fields – carbon dating.		
	a)Colloidal state of matter, various types and	3	
	classification.		
	b) Sols, dialysis, electro osmosis and	3	
TTT	electrophoresis.		Chalk and
111	c)Stability of colloids, protective action,	3	talk, Power
Colloida	Handy Schulze law and gold number.		point
Conoids	d) Emulsion: Types of emulsions,	3	presentation
	emulsifier with examples. Gels:		
	Classification, preparation Application of		
	colloids.		
	a)Importance of thermodynamics, terms used	4	
	in thermodynamics, open and closed		
	systems, state functions and path functions,		
	extensive and intensive properties.		
	b) Reversible and irreversible processes,		Chalk and
Unit IV	statement and mathematical form of first	3	talk Power
	law of thermodynamics.		noint
Thermodynamics	c)Heat capacity at constant volume and	3	presentation
	pressure, relation between C_p and C_v ,		Presentation
	Statement of II law of thermodynamics.	2	
	d) Entropy, Physical significance of		
	entropy, Gibb's free energy and its		
	significance.		
	a)Reaction rate, order and molecularity of a	3	
	reaction and zero order – first order.		
Unit V	b) First order rate equation derivative	4	Chalk and
	and half life period. Examples of first order		talk, Power
Chemical Kinetics	reactions.	_	point
	c)Second order reactions – examples. Carbon	3	presentation
	dating – enzyme catalysis.	2	
	d) Michaelis and Menten mechanism.		
Course Designed b	v, Mr. T. Srinivasan, Dr.M. Pandeeswa	ran	

Programme	B.Sc Chemistry	Programme Code	UCH
Course Code	20UCHA2P	Number of Hours/Cycle	2
Semester	II	Max. Marks	100
Part	III	Credit	2
	Allied]	Practical - I	
Course Title	Volumetric Analysis		
Cognitive Level -	Up to K4		

The lab course describes the practical procedure for the quantitative estimation of inorganic compound by volumetric method.

LIST OF EXPERIMENTS

A double titration involving the making up of the solution to be estimated and the preparation of a primary standard.

I. ACIDIMETRY AND ALKALIMETRY

- 1) Estimation of Hydrochloric acid
- 2) Estimation of Sodium hydroxide
- 3) Estimation of Sodium carbonate
- 4) Estimation of Nitric acid

II. REDOX TITRATIONS

Permanganometry

- 1) Estimation of ferrous ammonium sulphate
- 2) Estimation of potassium permanganate
- 3) Estimation of ferrous sulphate
- 4) Estimation of oxalic acid

III.EDTA TITRATION

1) Estimation of Total Hardness of water using EDTA

Course outcomes

On the successful completion of the course, students will be able to

CO 1	Define the various terms in volumetric analysis
CO2	Apply acidimetric and alkalimetric method for the quantitative volumetric estimation of acids and bases
CO3	Examine the strength of unknown solutions by titrimetry methods
CO4	Estimate the quantity present permanganometrically by performing the volumetric analysis
CO5	Analyze the hardness of any water samples

Pedagogy

Demonstrate, Chalk and Talk method, Hands on Training, and Group discussion.

Distribution of Marks (Max. marks – 100)

U D	uration	i of examination: 5 ms			
Regular Practical in the Class	:	10 Marks	Int: 40		
Regular Test in the class	:	20 Marks			
Observation note book	:	10 marks			
Total	:	40 marks			
Viva voce	-	10 marks	Ext: 60		
Record Notebook	-	10 marks			
Procedure writing	-	10 marks			
Volumetric estimation	-	30 marks			
TOTAL	-	60 marks			
Programme	B.Sc.Chemistry	Programme Code		UC	Η
---------------------	-----------------------	-----------------------	----	-----	---
Course Code	20UCHC31	Number of Hours/Cycle		4	
Semester	III	Max. Marks		100	
Part	III	Credit		4	
Core Course V					
Course Title	In	organic ChemistryII	L	Т	Р
Cognitive Level		Up to K3	60	-	-

The course enables the students to gain knowledge on conceptsof metallurgy, chemistry of oxides, Study of various theory, understand the types of metal carbonyls and its structure and bonding. Acquire the detail knowledge on transition and inner transition elements.

Unit I	Metallurgy	12Hours
	Metallurgy - occurrence of metals - minerals and ores -	
	mineral wealth of India – refining of metals – zone refining –	
	electrolytic refining – van Arkel – de Boer process – important	
	ores and extraction of the following metals – titanium,	
	thorium, molybdenum, cobalt and platinum – their important	
	alloys and applications.	
Unit II	Chemistry of Oxides	12 Hours
	Preparation, properties and uses of some important	
	compounds – titanium oxide, thorium oxide, ammonium	
	molybdate – vanadium pentoxide, sodium cobalti nitrate,	
	chloroplatinic acid.	
Unit III	Coordination Compounds	12 Hours
	Introduction - Nomenclature - isomerism in complexes -	
	geometrical and optical – Werner's theory – Sidgwick theory	
	– EAN rule – Valence bond theory – low spin and high spin	
	complexes – magnetic properties – Limitations of VB theory –	
	Crystal field theory – Octahedral and square planar complexes	
	- Color of coordination complexes - Modified CFT - ligand	
	field theory.	
Unit IV	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates	12 Hours
Unit IV	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates	12 Hours
Unit IV	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbidestypes_preparation_and_applicationsIntercalation	12 Hours
Unit IV	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses	12 Hours
Unit IV	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses Silicates-types-structure-mica, beryl.clay, zeolite and quartz	12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartz Transition and Inner Transition Elements	12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character,	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartz Transition and Inner Transition Elements Transition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points,	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric compounds, complex formation and alloy formation.	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric compounds, complex formation and alloy formation. Difference between first row and other two rows.	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses 	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses 	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses 	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartz Transition and Inner Transition Elements Transition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric compounds, complex formation and alloy formation. Difference between first row and other two rows. Lanthanides-Electronic configuration and general characteristics – Occurrence of lanthanides -– Isolation of lanthanides from monazite sand - Separation by ion-exchange method. Lanthanide contraction: Causes and consequences.	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and SilicatesBonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartzTransition and Inner Transition ElementsTransition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric compounds, complex formation and alloy formation. Difference between first row and other two rows. Lanthanides-Electronic configuration and general characteristics – Occurrence of lanthanides — Isolation of lanthanides from monazite sand - Separation by ion-exchange method. Lanthanide contraction: Causes and consequences. Industrial importance of lanthanides. Actinides- Electronic	12 Hours 12 Hours
Unit IV Unit V	Metal Carbonyls, Carbides, Intercalation Compounds and Silicates Bonding and structure of Fe, Co ,Ni and Cr carbonyls,Metal Carbides –types-preparation and applications, Intercalation compounds of graphite-preparation-properties and uses ,Silicates-types-structure-mica, beryl,clay, zeolite and quartz Transition and Inner Transition Elements Transition Metals- General characteristics- Metallic character, oxidation states, size, density, melting points, boiling points, ionization energy, color, magnetic properties, reducing properties, catalytic properties, non-stoichiometric compounds, complex formation and alloy formation. Difference between first row and other two rows. Lanthanides-Electronic configuration and general characteristics – Occurrence of lanthanides Isolation of lanthanides from monazite sand - Separation by ion-exchange method. Lanthanide contraction: Causes and consequences. Industrial importance of lanthanides. Actinides- Electronic configuration and general characteristics – Comparison with	12 Hours 12 Hours

Pedagogy

Chalk and Talk method.GroupDiscussions,Assignments,Quiz,Brainstorming Activities, Seminar and Powerpoint Presentations.

Text Books

- 1. Soni P.L., &KatyalM.,(2019), Text Book of Inorganic Chemistry, Sultan Chand
- 2. Madan R.D., (2010), Modern Inorganic chemistry, S.Chand and sons.

Reference Books

- 1. Lee. J.D, (2019), Concise Inorganic Chemistry, Wiley India P. Ltd, New Delhi.
- 2. F. Albert Cotton, Geoffrey Wilkinson, Manfred Bochmann and Carlos Murilla, (2007) Advanced Inorganic Chemistry,, 6th Ed., Wiley India Pvt. Ltd.
- **3.** Puri and Sharma, (2016), *Text Book for Inorganic Chemistry*, S. Chand & company Ltd,
- 4. Malik, Tuli and Madan,(2013), *Selected topics in Inorganic chemistry*, S.Chand and company Ltd.

E-Resources

- https://chem.libretexts.org/Bookshelves/General_Chemistry/
- <u>https://frontiesin.org>articles>full</u>
- <u>http://www.breslyn.org/chemistry/bonding/3-Theories/index-theories.php</u>
- https://www.enrjchem.com>article>view
- https://www.brightstorm.com/science/chemistry/the-periodic-table/transition-metals-inner-transition-metals/

Course Outcomes

After completion of this course, the students will be able to:

CO1	Identify the methods of extraction and refining techniques of metals
COI	from ores.
COD	Acquire the knowledge on the preparation, properties and uses of
02	important oxides.
CO2	Interpret the theories of coordination compounds and calculate the
0.05	CFSE values for octahedral and square planar compounds.
CO4	Outline the preparation, structure, properties and uses of metal
04	carbonyls, carbides, intercalation compounds and silicates.
CO5	Discuss the periodic trends, separation, uses of lanthanides and
005	students learn about extraction of lanthanides.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO	PS	PSO	PS	PS	PS						
	1	02	3	4	5	6	7	8	9	0 10	0 11	0 12
CO1	2	2	3	2	3	2	3	3	1	1	1	1
CO2	2	2	2	2	1	2	1	3	2	1	1	1
CO3	2	2	3	2	2	2	2	3	-	2	2	3
CO4	2	2	1	2	1	2	1	3	2	-	1	1
C05	2	2	1	2	3	2	1	3	2	1	1	2

3. High; 2. Moderate ; 1. Low

			Secti	on A	Section B	Section C
(Units	COs	K-Level	MO	CQs	Either/ or Choice	Open Choice
			No. of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K2	2	(K1 & K2)	2(K2& K2)	1(K2)
2	CO2	Up to K2	2	(K1 & K2)	2(K2& K2)	1(K2)
3	CO3	Up to K3	2	(K1 & K2)	2(K2& K2)	1(K3)
4	CO4	Up to K3	2	(K1 & K2)	2(K2& K2)	1(K3)
5	CO5	Up to K3	2	(K1 & K2)	2(K2& K2)	1(K3)
No of Qu	iestions	to be asked	10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total ma Section	arks for	each	10		40	50

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	5	-	-	5	5
K2	5	40	20	65	65
K3		-	30	30	30
Total Marks	10	40	50	100	100

|--|

Unit	Metallurgy	12 Hours	Mode
Ι	a. Introduction of Metallurgy, occurrence of metals,	2	
	minerals and ores		PPT
	b. mineral wealth of India, refining of metals, zone	2	presentation,
	refining		Chalk and Talk.
	c.electrolytic refining, van Arkel – de Boer process	3	
	d. important ores and extraction of the following	2	
	metals, titanium.		
	e. thorium, molybdenum, cobalt and platinum, their	3	
	important alloys and applications.		
Unit	Chemistry of Oxides	12 Hours	Mode
II	a. Preparation, properties and uses of some	2	
	important compounds		Chalk and Talk,
	b. titanium oxide, thorium oxide	3	Group

	' 1114		D' ' 1
	c. ammonium molybdate	2	Discussion and
	d. vanadium pentoxide,	2	
	e. vanadium pentoxide, sodium cobalti nitrate,	3	presentation.
TT 1 /	chloroplatinic acid.	10.11	
Unit	Coordination Compounds	12 Hours	Mode
	a. Introduction, Nomenclature, isomerism in	2	~ ~ ~ ~ ~
	complexes, geometrical and optical.		Chalk and Talk,
	b. Werner's theory, Sidgwick theory, EAN rule,	3	PPT
	Valence bond theory, low spin and high spin		Presentation.
	complexes.		_
	c. magnetic properties, Limitations of VB theory.	2	_
	d. Crystal field theory, Octahedral and square planar	3	
	complexes.		_
	e.Color of coordination complexes ,Modified CFT –	2	
	ligand field theory.		
Unit	Metal Carbonyls, Carbides, Intercalation	12 Hours	Mode
IV	Compounds and Silicates	-	
	a. Bonding and structure of Fe, Co ,Ni and Cr	2	
	carbonyls Metal Carbides.		Chalk and Talk,
	b. carbonyls, Metal Carbides	2	PPT .
	c. types-preparation and applications	2	Presentation.
	d. Intercalation compounds of graphite, preparation-	3	
	properties and uses ,Silicate		
	e.,Silicates-types-structure-mica, beryl,clay, zeolite	3	
	and quartz .		
Unit	Transition and Inner Transition Elements	12 Hours	Mode
V	a. Transition Metals- General characteristics-	2	
	Metallic character, oxidation states, size, density,		Chalk and Talk,
	melting points, boiling points, ionization energy,		PPT
	color, magnetic properties, reducing properties,		Presentation,Gr
	catalytic properties, non-stoichiometric compounds,		oup Discussion.
	complex formation and alloy formation.		
	b. . Difference between first row and other two	2	
	rows. Lanthanides-Electronic configuration and		
	general characteristics –		
	c. Occurrence of lanthanides, Isolation of	3	
	lanthanides from monazite sand -, Separation by ion-		
	exchange method.		
	d. Lanthanide contraction: Causes and	2	
	consequences. Industrial importance of lanthanides		
	e Actinides- Electronic configuration and general	3	
	characteristics, Comparison with lanthanides.		

Course designed by Dr.J.Sathiyabama, Dr.G.N.Kousalya and Mrs.S.Sulochana

Programme	B.Sc.Chemistry	Programme Code		UCI	I
Course Code	20UCHC41	Number of Hours/Cycle		4	
Semester	IV	Max. Marks		100	
Part	III	Credit		4	
Core Course					
Course Title]	Physical Chemistry-II	L	Т	P
Cognitive Level		Up to K3	60	-	-

To study and understand the importance of first law of thermodynamic and its applications, entropy changes in predicting the feasibility of reactions and physical transformation.

Unit I	Solid State	12 Hours					
	Laws of crystallography – law of constancy of interfacial						
	angle, law of symmetry, law of rational indices – Miller indices						
	- symmetry elements in a crystal. X-ray diffraction - Bragg's						
	equation – experimental method of determination of interplanar						
	spacing – X ray specrophotometer – the Debye – Scherrer						
	method. Types of crystals - ionic, molecular, covalent and						
	metallic crystals. Ionic crystals Structure of NaCl, KCl.						
	CsCl,Molecular crystals – Water and ammonia. Covalent						
	crystals - Diamond and graphite, Metallic crystals - Metallic						
	bond in metals,						
	Frankel and Schottky defects.						
Unit II	Chemical Kinetics	12 Hours					
	Introduction – rate of reaction – rate law and rate constant –						
	order and molecularity of a reaction. Reaction of first and						
	pseudo unimolecular reactions. Catalytic decomposition of						
	hydrogen peroxide – Decomposition of dinitrogen pentoxide.						
	Inversion of can sugar and hydrolysis of ester by acid. Second,						
	third and zero order reactions – examples – rate equation – half						
	lifeperiod . Influence of temperature on the rate of reaction –						
	Arrhenius rate equation and its significance. Theory of reaction						
	rates: Bimolecular collision theory - unimolecular theory -						
	Lindemann's hypothesis – Absolute Reaction Rate theory.						
	Influence of ionic strength on reaction rate – primary and						
	secondary salt effect – kinetics of fast reactions – relaxation						
	method.						
Unit III	First Law of Thermodynamics And its Applications	12 Hours					
	First Law- statement – mathematical formulation – internal						
	energy – enthalpy or heat content – heat changes at constant						
	volume and at constant pressure conditions – relationship						
	between C_p and C_v – work done, heat change and enthalpy						
	change for reversible isothermal expansion and compression of						
	an ideal gas – calculation of q, w, ΔE , ΔH for reversible						
	adiabatic expansion of an ideal gas – relation between T, V and						
	P of an ideal gas undergoing adiabatic reversible expansion						
	comparison of work done in isothermal and adiabatic reversible						
	expansion of an ideal gas. Types of heat(enthalpy) reactions-						
	Joule Thomson effect – Joule Thomson coefficient in the case						
	of ideal and real gases – inversion temperature – Hess' law of						
	heat summation – Kirchoff's equation						
Unit IV	Second Law of Thermodynamics and its Applications	12Hours					
	Second law of thermodynamics: Limitations of first law and						
	the need for the second law. Formulation of the second law of						
	thermodynamics on the basis of Carnot cycle- various						

	statements of the second law of thermodynamics- Carnot theorem- Thermodynamic principle of the working of refrigerator .Concept of entropy- entropy changes for physical transformations- entropy and probability. Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G and A with T, V and P - Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state. Criteria of spontaneity. Changes in S, G and A as criteria for spontaneous process Partial molar properties- Chemical potential-variation	
	of chemical potential with temperature and pressure-Gibbs –	
Unit V	Third Law of Thermodynamics and its Applications	12Hours
	Application of thermodynamics to various type of equilibria – equilibrium constant and free energy changes – van'thoff reaction isotherm and van't Hoff isochore – thermodynamic interpretation of law of mass action and LeChatelier principle. Thermodynamics III – Nernst heat theorem and its applications third law of Thermodynamics-Experimental verifications of third law of thermodynamics.	

Pedagogy

Chalk and Talk method, Group Discussion, Assignments, Quiz, Brainstorming Activities, Seminar, Powerpoint presentations and problem solving.

Text Books

- Bahl.B.S, G.D.Tuli.G.D and Arun Bahl,(2011), Essentials of physical chemistry, 12th Ed., S.Chand&company Ltd, New Delhi
- **2.** Puri.B.R,Sharma.L.R and M.S.Pathania.(2016), Principles of Physical Chemistry, 47thEdn., Vishal Publishing Co.,

Reference Books

- 1. Atkins Physics Chemistry, Peter Atkins, Julio de Paula, and James Keeler, Oxford University Press, UK 11th Ed.,2017.
- 2. Van Samuel Glasstone D.,2002, Thermodynamics, 5th edition, Eastern, Wiley Publication, London, U.K.
- 3. Glasstone S.(1948) 'A Textbook of Physical Chemistry.

E-Resources

- www.springer.com.
- https://solidstateformen.com/.
- http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/rate.php.
- http://www.gre.nasa.gov/www/12/airplain/thermol.html.
- http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/seelaw.html

Course Outcomes

After completion of this course, the students will be able to:

i moor compromo						
CO1	To inculcate knowledge on the importance of types of crystal structure					
	and detects					
CO2	Examine various order of reactions and half life period					
CO3	Aquant with the fundamental knowledge of first law of thermodynamics and thermochemistry					
CO4	Gain knowledge on the second law of thermodynamics and its applications					
CO5	Acquire the concept of third law of Thermodynamics and its applications					

	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	3	3	1	3	2	1	-	1	-	1
CO2	3	2	2	3	2	2	2	1	-	2	-	1
CO3	2	2	2	3	1	2	1	1	-	1	-	1
CO4	3	2	1	3	2	3	1	2	-	1	-	1
C05	2	2	1	3	1	2	2	1	-	2	-	1

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

3. High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sectio	n A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. of Questions	K- Lovel	No. of Question	No. of
1	CO1	Up to K2	2	K1&K2	2(K2&K2)	1(K2)
2	CO2	Up to K2	2	K1&K2	2(K2&K2)	1(K2)
3	CO3	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
4	CO4	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
5	CO5	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
No of Questions to be asked		10		10	5	
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total m Section	marks for each		10		40	50

K1 - Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers K3 – Application oriented – Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5	5%
K2	5	40	20	65	65	65%
K3	-	-	30	30	30	30%
Total Marks	10	40	50	100	100	100%

	Lesson Plan		
UnitI	Solid State	12 Hours	Mode
	a. Laws of crystallography , law of constancy of	3	
	interfacial angle, law of symmetry, law of rational		Chalk
	indices		and
	b. Miller indices , symmetry elements in a crystal. X-	3	Talk,PPT
	ray diffraction, Bragg's equation		Presentati
	c. experimental method of determination of interplanar	3	on
	spacing, X ray specrophotometer, the Debye,		
	Scherrer method		
	d. Types of crystals , ionic, molecular, covalent and	2	
	metallic crystals. Ionic crystals Structure of NaCl,		
	KCl. CsCl,Molecular crystals, Water and ammonia.		
	Covalent crystals		
	e. Diamond and graphite, Metallic crystals, Metallic	1	
	bond in metals,		
	Frankel and Schottky defects.		
UnitI	Chemical Kinetics	12 Hours	Mode
Ι	a.Introduction, rate of reaction, rate law and rate	2	Group
	constant, order and molecularity of a reaction.		Discussio
	b. Reaction of first and pseudo unimolecular reactions.	3	n, Chalk
	Catalytic decomposition of hydrogen peroxide,		and Talk,
	Decomposition of dinitrogen pentoxide		PPT
	c. Inversion of cane sugar and hydrolysis of ester by	3	Presentati
	acid. Second, third and zero order reactions, examples		on.
	, rate equation , half life period (no derivation		
	required).		
	d. Influence of temperature on the rate of reaction ,	2	
	Arrhenius rate equation and its significance. Theory of		
	reaction rates: Bimolecular collision theory,		
	unimolecular theory, Lindemann's hypothesis		
	e. Absolute Reaction Rate theory. Influence of ionic	2	
	strength on reaction rate ,primary and secondary salt		
	effect, kinetics of fast reactions – relaxation method.		
UnitI	First Law of Thermodynamics and its Applications	12 Hours	Mode
11	a. First Law- statement ,mathematical formulation	2	CI 11
	,internal energy ,enthalpy or heat content	-	Chalk
	b. heat changes at constant volume and at constant	2	and
	pressure conditions, relationship between C_p and C_v –	2	Talk,Gro
	c. work done, heat change and enthalpy change for	3	up Diagonalia
	reversible isothermal expansion and compression of an		Discussio
	ideal gas, calculation of q, w, ΔE , ΔH for reversible		n.
	adiabatic expansion of an ideal gas –		
	d. calculation of q, w, ΔE , ΔH for reversible	3	
	adiabatic expansion of an ideal gas, relation between		
	T, V and P of an ideal gas undergoing adiabatic		
	reversible expansion comparison of work done in		
	isothermal and adiabatic reversible expansion of an		
	ideal gas.		
	e. Joule effect , Joule Thomson effect , Joule Thomson	2	
	coefficient in the case of ideal and real gases,		
	inversion temperature, Hess' law of heat summation -		
	Kirchoff's equation		
UnitI	Second Law of Thermodynamics and its	12 Hours	Mode
V	Applications		
	a. Second law of thermodynamics: Limitations of first	2	

	law and the need for the second law.			
	b. Formulation of the second law of thermodynamics	3	Chalk	
	on the basis of Carnot cycle ,various statements of the		and Talk,	
	second law of thermodynamics-	PPT		
	c Carnot theorem- Thermodynamic principle of the	3	Presentati	
	working of refrigerator .Concept of entropy-entropy		on, Video	
	changes for physical transformations- entropy and		Lectures.	
	probability.			
	d. Free Energy Functions: Gibbs and Helmholtz	2		
	energy; variation of S, G and A with T, V and P			
	,Gibbs-Helmholtz equation; Maxwell relations;			
	thermodynamic equation of state. Criteria of			
	spontaneity.			
	e. Changes in S, G and A as criteria for spontaneous	2		
	process Partial molar properties, Chemical potential-			
	variation of chemical potential with temperature and			
	pressure-Gibbs ,Duhem equation			
Unit	Third law of thermodynamics and its applications	12 Hours	Mode	
V	Application of thermodynamics to various type of	2		
	equilibria			
	b. equilibrium constant and free energy changes	2		
	c.Van'thoff reaction isotherm and Van't Hoff isochore	3	Lecture	
	d. thermodynamic interpretation of law of mass action	3	Method,	
	and Lechatelier principle		PPT	
	e. Thermodynamics III, Nernst heat theorem and its	2	Presentati	
	applications third law of Thermodynamics.		on.	

Course designed by Dr.J.Sathiyabama, Dr. G.N.KousalyaandMs.P.Angel

Programme	B.Sc.Chemistry	Programme Code		UC	H		
Course Code	20UCHC4P	Number of Hours/Cycle		2			
Semester	IV	Max. Marks		100)		
Part		Credit					
	Core Practical II						
Course Title	Volumetric analysis L			Т	Р		
Cognitive Level Up		pto K4			30		

The lab course describes the practical procedure for the quantitative estimation of inorganic compound by volumetric method.

List of Experiments

A double titration involving the making up of the solution to be estimated and the preparation of a primary standard.

I. Acidimetry and Alkalimetry

- 1. Estimation of HCl
- 2. Estimation of Na₂CO₃
- 3. Estimation of NaOH / KOH
- 4. Estimation of oxalic acid

II. Redox Titrations

A. Permanganimetry

- 1. Estimation of ferrous ion
- 2. Estimation of oxalic acid
- 3. Estimation of calcium (direct method)

B. Dichrometry

- 1. Estimation of ferrous ion
- 2. Estimation of ferrous ion by external indicator method

III. Iodometry And Iodimetry (Demonstration only)

1. Estimation of potassium dichromate

- 2. Estimation of potassium permanganate
- 3. Estimation of copper Sulphate
- 4. Estimation of arseneous oxide

IV Argentimetry

1. Estimation of potassium chloride

V. Complexometric Titration (Demonstration only)

- 1. Estimation of Hardness of water using EDTA
- 2. Estimation of Calcium using EDTA
- 3. Estimation of Magnesium using EDTA

Course Outcomes

After completion of this course, the students will be able to:

CO1	Prepare standard solution.
CO2	Write short procedure
CO3	Calculate normality of the given solution
CO4	Estimate volumetrically the amount of unknown substance

Scheme of Evaluation (Max.marks100) Internal Assessment 40 Marks

Regularity	10 marks
Class Test	20 marks
Observation Note	10 marks
Total	40 marks

External Examination: 60 Marks (3 hours)

Record Note Book	10 Marks
Procedure	10 Marks
Estimation : 30 Marks	
< 3 %	30 Marks
3 - 4%	25 Marks
4- 5%	20 Marks
> 5%	10 Marks
Viva-Voce	10Marks

Value Added Courses

Programme	B.Sc.Chemistry	Programme Code			UCH
Course Code	20CCHE31	Number of Hours/Cycle			2
Semester	IV	Max. Marks			30
Part	III	Credit			
	7	Value Added Course I			
Course Title		Sugar Technology	L	Т	Р
Cognitive Level				-	-

Preamble

To understand the various steps involved in sugar manufacturing and to learn the testing and estimation of Sugar and its applications

Unit I		6Hours
	Sugar Industry in India – Sugarcane and Sugar Beet – Manufacture of cane sugar.	
Unit II		6 Hours
	Extraction of Juice – Concentration – Separation of crystals – Recovery of glucose from molasses Defection.	
Unit III		6 Hours
	Sulphitation and carbonation – Testing and Estimation of Sugar	
Unit IV		6 Hours
	Double Sulphitation Process, Double Carbonation process	
Unit V		6 Hours
	Preparation of Alcohol from Molasses, Preparation of Absolute Alcohol Manufacture of Wine, Beer, Methylated Spirit, Power Alcohol.	

Pedagogy

Chalk and Talk method, Group Discussion, Assignments, Quiz, Brainstorming Activities, Seminar and Powerpoint presentations

Text Book

1. Sharma B.K (2016), Industrial Chemistry (Including Chemical Engineering), 16th Revised and Enlarged Edition, Goel Publishing House, Meerut

Reference Books

- 1. Sharma B.K (2016), Industrial Chemistry (Including Chemical Engineering), 16th Revised and Enlarged Edition, Goel Publishing House, Meerut
- 2. Bhal Arun (2016), Advanced Organic Chemistry, S.Chand and Company Limited, New Delhi

Programme	B.Sc.Chemistry	Programme Code			UCH
Course Code	20CCHE41	Number of Hours/Cycle			2
Semester	IV	Max. Marks			30
Part		Credit			
	V	alue Added Course II			
Course Title Perfume Chemistry L			Т	Р	
Cognitive Level			30	0	0

To understand the various Process involved in the Perfume Chemistry and the Chemical Composition of Perfume

Unit I		6 Hours
	Introduction – Esters – Esters of benzyl alcohol, Esters of	
	cinnamic acid, Methyl Cinnamate and Ethyl Cinnamate	
Unit II		6 Hours
	Alcohols – Citronellol – Terpineols, Linalool, Geraniol, Citral	
	and Nerol – Ketones – Civetone-Muscone-Ionones- α , β and γ	
	ionones –Nitromusks	
Unit III		6 Hours
	Aldehydes – Vanillin – Cinnamic Aldehyde-Anisaldehyde –	
	Diphenyl Methane-Heliotropin	
Unit IV		6 Hours
	Production of natural Perfumes - Flower perfumes - Jasmine	
	– Lily - Orange blossom – Rose.	
Unit V		6 Hours
	Artificial flavoursBanana Compounds – Grape	
	Compounds, Apple compounds and Pine apple compounds	

Pedagogy

Chalk and Talk method, Group Discussion, Assignments, Quiz, Brainstorming Activities, Seminar and Powerpoint presentations

Text Book

 Sharma B.K., (2016), Industrial Chemistry (Including Chemical Engineering) Goel Publishing House, 16th Revised and Enlarged Edition.

Reference Book

1. Sharma B.K., (2016), Industrial Chemistry (Including Chemical Engineering) Goel Publishing House, 16th Revised and Enlarged Edition.

Allied Courses Offered to Other Departments (For students of zoology and physics admitted from the academic year 2020—2021 onwards)

Programme	B.Sc Programme Code		UCH		
Course Code	20UCHA31	Number of Hours/Cycle	4		
Semester	III	Max. Marks	30		
Part	III Credit		4		
		Allied Course			
Course Title	Course Title Organic and Physical Chemistry		L	Т	Р
Cognitive Level		Up to K3	60	-	-

Preamble

The course enables the students to learn and provide the basic concepts of heterocyclic compounds, Alkaloids, Antibiotics, Vitamins, Adsorption, Basic principle of chromatography technique and catalysis

Unit I	Heterocyclic compounds	12 Hours
	Definition - Classification - Five membered ring	
	compounds - Preparation of Pyrrole and Furan- reactions -	
	electrophilic substitutions, oxidation and reduction. Six	
	membered ring compound - Preparation of Pyridine -	
	reactions - electrophilic and nucleophilic substitutions,	
	oxidation and reduction. Condensed ring compounds -	
	Quinoline and Isoquinoline – reactions - electrophilic and	
	nucleophilic substitutions, oxidation and reduction	
Unit II	Alkaloids, Antibiotics & Vitamins	12 Hours
	Alkaloids - Pharmacological properties and importance of	
	the following alkaloids - nicotine, quinine, piperine and	
	cocaine (Structural elucidation not necessary). Antibiotics	
	-Classification and biological functions of antibiotics –	
	penicillin, chloroamphenicol, streptomycin and	
	tetracycline. Vitamins - Classification and biological	
	functions of vitamins A,B ₁ ,B ₂ ,B ₃ ,B ₅ ,B ₆ ,B ₁₂ ,Biotin,Folic	
	acid, C, D, E and K, (Structural elucidation not required).	
Unit III	Adsorption	12 Hours
	Definition – difference between adsorption and absorption	
	– adsorbate, adsorbent, sorption, desorption –	
	Characteristics of adsorption – physical adsorption –	
	chemical adsorption – differences between these two types.	
	Adsorption of gases on solids - factors influencing	
	adsorption of gases on solid surface – nature of solid,	
	nature of gas, effect of temperature and effect of pressure.	
	Adsorption of solutes from solutions – factors influencing	
	adsorption of solutes from solution – effect of temperature	
	and concentration – effect of surface area- nature of the	
	solute – unterentiate negative adsorption and positive	
	Langmuir isotherm (no derivation statement only)	
	Applications of adsorption	
	Applications of adsorption.	
Unit IV	Basic Principle of Chromatography Technique	12 Hours
	Definition – classification – general applications of	
	chromatography.	
	Adsorption Chromatography (Liquid – Solid	
	Chromatography (LSC)) – Column chromatography and	
	Ion exchange chromatography – applications. Partition	

	chromatography (Liquid – Liquid Chromatography (LLC)) – Paper chromatography and Thin layer chromatography (TLC) – applications.Gas chromatography (GC) - gas-solid chromatography (GSC) and gas-liquid chromatography (GLC) – High performance liquid chromatography (HPLC) applications	
Unit V	Catalysis	12 Hours
	Definition – Catalyst – Positive catalyst, Negative catalyst. Catalysis - Effect of a catalyst- characteristics or criteria of catalysis - theories of catalysis – Intermediate compound formation theory and Adsorption theory. Different types of catalysis- Enzyme catalysis – lock and key theory - examples of enzyme catalysis – characteristics of enzyme catalysis - factors affecting enzyme catalysis. Homogeneous catalysis – acid-base catalysis – Heterogeneous catalysis - surface catalytic reactions - differences between homogeneous catalysis and heterogeneous catalysis – Auto catalysis. Definition and examples – catalytic poisoning – catalytic promoters. Application of catalysis – catalytic converter	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

- 3. Arun Bahl and Bahl.B.S., (2019), A *Text Book of Organic Chemistry*, S.Chand& Company Ltd, New Delhi.
- 4. Soni.P.L., Dharmarha.O.P., Dash.U.N., (2016), *Textbook of Physical Chemistry*, Sultan Chand & Sons

Reference Books

- 1. Bahl.B.S., Arun Bahl., Tuli.G.D., (2019), *Essentials of Physical chemistry*, S.Chand and company Ltd.
- 2. Puri., Sharma., Pathania., (2018), Principles of physical Chemistry, Vishal Publishing Co
- 3.R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2018), Organic Chemistry, Pearson

4. Jain.M.K., Sharma.S.C., (2018), *Modern Organic Chemistry*, Vishal Publishing Co **E-Resources:**

- https://www.uou.ac.in/lecturenotes/science/MSCCH-17/CHEMISTRY%20LN%208%20NATURAL%20PRODUCTS-converted.pdf
- https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/heterocy.htm
- https://oer.unimed.edu.ng/LECTURE%20NOTES/3/2/RASAQ-NURUDEEN-OLAJIDE-UNIMED-BCH-222-VITAMINS.pdf
- http://classes.biology.ucsd.edu/bimm118.WI16/PPT%20Lecture%20Notes/Lecture%201
 6.pdf
- http://www.chem.gla.ac.uk/staff/stephenc/teaching/HeterocycleLectures2011_2C12.pdf
- http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000665/M0264 67/ET/1515661910CHE_P10_M21_etext.pdf
- http://www.vpscience.org/materials/US04EICH04%20Chromatography.pdf
- https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod5.pdf
- https://stannescet.ac.in/cms/staff/qbank/CSE/Notes/CY8151-Engineering%20Chemistry-431878289-unit_2%20(1).pdf

Course Outcomes

After completion of this course, the students will be able to:

CO1	Outline the preparation, structure, properties of heterocyclic compounds
CO2	Understand the role of Alkaloids, Antibiotics and Vitamins in biological
	systems and medicine
CO3	Recall their knowledge on surface chemistry concepts
CO4	Apply purification methods of organic molecules by Chromatographic
	techniques
CO5	Explain different types of catalysts and reaction mechanism of catalysis

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	0	0	0
										10	11	12
CO1	3	1	1	2	1	3	3	1	-	1	-	-
CO2	3	3	1	3	2	3	3	1	-	2	-	-
CO3	3	2	2	2	1	3	2	1	-	1	-	-
CO4	3	2	3	2	1	3	3	2	-	1	-	1
C05	3	2	2	2	2	3	2	2	-	3	-	-

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sect	ion A	Section B	Section C
		K L ovol	M	CQs	Either/ or	(Open Chaica)
Units	COS	K-Level	No. of	V L arral	Choice	Choice)
			INO. 01	K-Level	INO. 01	INO. 01
			Questions		Question	Question
1	CO1	Up to K3	2	K1 & K2	2 K2 & K2)	K3
2	CO2	Up to K2	2	K1 &K1	2 (K2& K2)	K2
3	CO3	Up to K3	2	K1 & K2	2 (K2 & K2)	K3
4	CO4	Up to K2	2	K1 &K1	2 (K2 & K2)	K2
5	CO5	Up to K3	2	K1 & K2	2 (K2 & K2)	K3
No of Q	uestions	to be asked	10		10	5
No of Q	uestions	to be	10		5	3
answered						
Marks for each Question			1		4	10
Total m	arks for	each	10		40	50
Section						

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problem

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	Consolidated (Rounded off)
K1	7		-	7	7	15%
K2	3	40	20	63	63	55%
K3	-	-	30	30	30	30%
Total Marks	10	40	50	100	100	100%

Distribution of Section - wise Marks with K Levels

Lesson Plan

UnitI	Heterocyclic Compounds	12 Hours	Mode
	a. Definition and Classification of	1	PPT
	Heterocyclic compounds		presentation,
	b. Five membered ring compounds -	2	Chalk and
	Preparation of Pyrrole- reactions -		Talk, Video
	electrophilic substitutions, oxidation and		presentation
	reduction.		_
	c.Preparation of Furan - reactions -	2	
	electrophilic substitutions, oxidation and		
	reduction.		
	d. Six membered ring compound -	3	
	Preparation of Pyridine – reactions -		
	electrophilic and nucleophilic substitutions,		
	oxidation and reduction.		
	e. Condensed ring compounds - Quinoline	4	
	and Isoquinoline – reactions - electrophilic		
	and nucleophilic substitutions, oxidation and		
	reduction.		
UnitII	Alkaloids, Antibiotics & Vitamins	12 Hours	Mode
	a. Alkaloids - Pharmacological properties	4	РРТ
	and importance of the following alkaloids –		presentation,
	nicotine, quinine, piperine and cocaine		Chalk and
	(Structural elucidation not necessary).		Talk, Video
	b. Antibiotics -Classification and biological	4	presentation
	functions of antibiotics – penicillin,		_
	chloroamphenicol, streptomycin and		
	tetracycline.		
	c. Vitamins - Classification and biological	4	
	functions of vitamins A, B ₁ , B ₂ , B ₃ , B ₅ , B ₆ ,		
	B_{12} , Biotin, Folic acid, C, D, E		
	and K, (Structural elucidation not required).		
UnitIII	Adsorption	12 Hours	Mode
	a. Definition – difference between	2	PPT
	adsorption and absorption – adsorbate,		presentation,
	adsorbent, sorption, desorption –		Chalk and
	Characteristics of adsorption.		Talk, Video
	b. Physical adsorption – chemical adsorption	2	presentation
	 differences between these two types. 		
	c. Adsorption of gases on solids - factors	2	
	influencing adsorption of gases on solid		
	surface - nature of solid, nature of gas,		
	effect of temperature and effect of pressure.		
	d. Adsorption of solutes from solutions –	2	

	factors influencing adsorption of solutes from solution – effect of temperature and concentration – effect of surface area- nature of the solute – differentiate negative adsorption and positive adsorption. e. Adsorption isotherm – Freundlich isotherm & Longmuir isotherm (no	4	
	derivation, statement only). Applications of adsorption.		
UnitIV	Basic Principle of Chromatography	12 Hours	Mode
	a. Definition – classification – general applications of chromatography.	3	PPT presentation,
	b. Adsorption Chromatography (Liquid – Solid Chromatography (LSC)) – Column chromatography and Ion exchange chromatography – applications.	3	Chalk and Talk, Video presentation
	c. Partition chromatography (Liquid – Liquid Chromatography (LLC)) – Paper chromatography and Thin layer chromatography (TLC) – applications.	3	
	d. Gas chromatography (GC) - gas-solid chromatography (GSC) and gas-liquid chromatography (GLC) – High performance liquid chromatography (HPLC) – applications.	3	
UnitV	Catalysis	12 Hours	Mode
	a. Definition – Catalyst – Positive catalyst, Negative catalyst. Catalysis	1	PPT presentation,
	b. Catalysis - Effect of a catalyst- characteristics or criteria of catalysis	2	Chalk and Talk, Video
	c. Theories of catalysis – Intermediate compound formation theory and Adsorption theory.	2	presentation
	d. Different types of catalysis- Enzyme catalysis – lock and key theory - examples of enzyme catalysis – characteristics of enzyme catalysis - factors affecting enzyme catalysis. Homogeneous catalysis – acid-base catalysis – Heterogeneous catalysis - acid-base catalytic reactions - differences between homogeneous catalysis and heterogeneous catalysis – Auto catalysis.	4	
	e. Definition and examples – catalytic poisoning – catalytic promoters. Application of catalysis – catalytic converter	3	

Course designed by

Dr. G.N. Kousalya, Dr.A.Sahaya Raja and Dr.M.Pandeeswaran

Programme	B.Sc	Programme Code	UCH		
Course Code	20UCHA41	Number of Hours/Cycle	4		
Semester	IV	Max. Marks	100		
Part	III Credit		4		
		Allied Course			
Course Title	Organic, Inorganic and Physical Chemistry		L	Т	Р
Cognitive Level		Up to K3	60	-	-

The course enables the students to gain knowledge on basic concepts, theories and applications of Electrochemistry, Photochemistry, Polymers, Coordination compounds and organic spectroscopy .

Unit I	Electrochemistry	12 Hours
	Electrolysis- Faraday's law of electrolysis - specific and	
	equivalent conductance – electrochemical cell – Nernst equation	
	– convention regarding the sign of EMF of a cell. Electrodes –	
	types of electrodes - Metal - Metal ion electrodes - Metal -	
	Metal insoluble salt electrodes – gas electrodes – glass and Ion	
	selective electrode (membrane potential). Reference electrodes –	
	hydrogen electrode, calomel electrode. Determination of pH	
	using glass electrode – Hydrogen - Oxygen fuel cell	
Unit II	Photochemistry	12 Hours
	Comparison of thermal and photochemical reactions – definition of photochemical reactions – laws of photochemistry – Grottus – Draper law – Einstein law – quantum efficiency – reasons for low and high quantum yield with examples- consequence of light absorption by atoms and molecules - differences between the primary and secondary process in a photochemical reaction. Photophysical processes - Luminescence – Jablonsky diagram – fluorescence – phosphorescence – comparison and applications of fluorescence and phosphorescence – chemiluminescence – bioluminescence – thermoluminescence. Photochemical reactions – photosensitization - biological applications of	
	photochemistry.	
Unit III	Polymers	12 Hours
	Definition – classification of polymers – properties of polymers - Polymerisation – addition and condensation polymerization reactions with examples – differences between these two types – Copolymerisation. Rubber – natural rubber - Preparation and drawbacks of polyisoprine – Synthetic rubber - preparation, properties and applications of Butyl rubber and styrene butadiene rubber (SBR) – distinguish natural rubber and synthetic rubber – vulcanization of rubber. Plastic - difference between Thermo and Thermosetting plastics. – Important plastics – preparation, properties and applications of PVC, polystyrene, Teflon, PET, Nylon – 6:6, Bakelite.	
Unit IV	Coordination compounds	12 Hours
	Definition – nomenclature – definition of various terms involved	
	in coordination chemistry. Stereoisomerism in complexes -	
	geometrical isomerism and optical isomerism.	
	Theories of co -ordination compounds - sidgwick's theory -	
	EAN rule - Werner's theory - VB theory - postulates -	

	octahedral complexes. Metal carbonyls - Nickel carbonyl -	
	Chromium carbonyl.	
Unit V	Spectroscopy	12 Hours
	Definition - Spectroscopy – Spectrum - types of Spectroscopy –	
	UV spectroscopy - Basic principles of UV spectroscopy -	
	energy level diagram (electronic transition) – Important terms	
	used in UV - visible spectroscopy - Chromophore -	
	Auxochrome – bathochromic shift – hypsochromic shift –	
	hyperchromic effect – hypochromic effect – application of UV	
	spectroscopy. IR spectroscopy – Theory of IR spectroscopy –	
	Stretching and bending vibration of linear and non – linear	
	molecule - example – application of IR spectroscopy-	
	identification of simple organic molecules - ethanol and	
	dimethyl ether, acetaldehyde and acetone, ethylene and	
	acetylene, $cis - 2$ – butene and trans – 2 – butene, methylamine,	
	dimethyl amine and trimethylamine.	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

- 1. Soni.P.L., Dharmarha.O.P., Dash.U.N., (2018), *Textbook of Physical Chemistry*, Sultan Chand & Sons
- 2. Arun Bahl and Bahl.B.S., (2019), A Text Book of Organic Chemistry, S.Chand& Company Ltd, New Delhi.
- 3. Puri. B.R., Sharma. L.R. and Kalia. K.C., (2019) *Principles of Inorganic Chemistry*, Vishal Publishing Co.

Reference Books

- 1. Bahl.B.S., Arun Bahl., Tuli.G.D., (2019), *Essentials of Physical chemistry*, S.Chand and company Ltd.
- 2. Puri., Sharma., Pathania., (2018), Principles of physical Chemistry, Vishal Publishing Co
- 3. Madan R.D,(2018), Modern Inorganic chemistry, S.Chand and sons.
- 4. Malik.W.U., Tuli.G.D., and Madan.R.D.,(2018), *Selected topics in Inorganic chemistry*, S.Chand and company Ltd.
- 5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2018), Organic Chemistry, Pearson
- 6.Jain.M.K., Sharma.S.C., (2018), *Modern Organic Chemistry*, Vishal Publishing Co **E-Resources:**
- 1.http://vazecollege.net/wp-content/uploads/2016/08/ggpybsc_electrochemistry_10feb14.pdf
- 2. https://science.maheshtutorials.com/images/mhtcet_2016_notes/chemistry/Electrochemi stry.pdf
- 3.https://www.ch.ntu.edu.tw/~sfcheng/HTML/material94/Polymer-1.pdf
- 4.https://www2.chemistry.msu.edu/courses/cem151/chap24lect_2009.pdf
- 5.https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod2.pdf
- 6.https://www.lehigh.edu/~kjs0/carey-13.PDF
- 7.http://www.stpius.ac.in/crm/assets/download/Photochemistry.pdf

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand the basic concepts, theories and applications of electrochemistry
CO2	Explain various photochemical processes
CO3	Summarise the preparation, general properties and application of various
	inorganic polymers
CO4	Name the basic terms and isomerism involved in coordination compounds
	and explain various theories of coordination compounds
CO5	Attain awareness about the application of spectral techniques in analysing
	organic molecules.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	2	1	1	3	2	1	-	1	-	1
CO 2	3	2	-	2	1	3	2	1	-	-	-	-
CO 3	3	2	1	1	1	3	1	1	-	1	-	1
CO 4	3	1	1	-	-	3	1	1	-	1	-	-
CO 5	3	2	3	2	-	3	2	2	-	-	-	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sect	ion A	Section B	Section C
Units	COs	K-Level	M	CQs	Either/ or Choice	Either / or Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	(K1&K1)	2 (K2&K2)	1(K2)
2	CO2	Up to K2	2	(K1 &K1)	2 (K2&K2)	1(K2)
3	CO3	Up to K3	2	(K1 & K2)	2 (K2&K2)	1(K3)
4	CO4	Up to K3	2	(K1 & K2)	2 (K2&K2)	1(K3)
5	CO5	Up to K3	2	(K1 & K2)	2 (K2&K2)	1(K3)
No of Questions to be asked		10		10	5	
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total m	arks for	each	10		40	50
Section						

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (open Choice)	Total Marks	% of Marks without Choice
K1	7	-	-	7	7%
K2	3	40	20	63	63%
K3	-		30	30	30%
Total Marks	10	40	50	100	100%

Distribution of Section - wise Marks with K Levels

Lesson Plan

UnitI	Electrochemistry	12 Hours	Mode
	a. Electrolysis- Faraday's law of electrolysis -	3	PPT
	specific and equivalent conductance		presentation,
	b. Electrochemical cell – Nernst equation –	2	Chalk and
	convention regarding the sign of EMF of a		Talk, Video
	cell.		presentation
	c. Types of electrodes - Metal – Metal ion	2	
	electrodes – Metal – Metal insoluble salt		
	electrodes - gas electrodes - glass and Ion		
	selective electrode (membrane potential).		
	d. Reference electrodes – hydrogen electrode,	5	
	calomel electrode. Determination of pH using		
	glass electrode – Hydrogen - Oxygen fuel cell		
UnitII	Photochemistry	12 Hours	Mode
	a. Comparison of thermal and photochemical	2	PPT .
	reactions – definition of photochemical		presentation,
	reactions		Chalk and
	b. Laws of photochemistry – Grottus – Draper	4	Taik, Video
	law – Einstein law – quantum efficiency –		presentation
	reasons for low and high quantum yield with		
	examples- consequence of light absorption by		
	atoms and molecules - differences between the		
	philling and secondary process in a photochemical reaction		
	c Photophysical processes - Luminescence -	Δ	
	Iablonsky diagram – fluorescence –	7	
	phosphorescence – comparison and		
	applications of fluorescence and		
	phosphorescence – chemiluminescence –		
	bioluminescence – thermoluminescence.		
	d. Photochemical reactions –	2	
	photosensitization - biological applications of		
	photochemistry.		
UnitIII	Polymers and Macromolecules	12 Hours	Mode
	a. Definition – classification of polymers –	3	PPT
	properties of polymers		presentation,
	b. Polymerisation – addition and condensation	2	Chalk and
	polymerization reactions with examples -		Talk, Video
	differences between these two types –		presentation
	Copolymerisation.		
	c. Rubber – natural rubber - Preparation and	3	
	drawbacks of polyisoprine - Synthetic rubber -		
	preparation, properties and applications of		
	Butyl rubber and styrene butadiene rubber		
	(SBR) – distinguish natural rubber and		

	synthetic rubber – vulcanization of rubber.		
	d. Plastic - difference between Thermo and	4	
	Thermosetting plastics. – Important plastics –		
	preparation, properties and applications of		
	PVC, polystyrene, Teflon, PET, Nylon - 6:6,		
	Bakelite.		
UnitIV	Coordination compounds	12 Hours	Mode
	a. Definition – nomenclature – definition of	3	PPT
	various terms involved in coordination		presentation,
	chemistry.		Chalk and
	b. Stereoisomerism in complexes –	2	Talk, Video
	geometrical isomerism and optical isomerism.		presentation
	c. Theories of co –ordination compounds –	5	
	sidgwick's theory - EAN rule - Werner's		
	theory – VB theory – postulates – octahedral		
	complexes.		
	d. Metal carbonyls – Nickel carbonyl –	2	
	Chromium carbonyl.		
UnitV	Spectroscopy	12 Hours	Mode
	a. Definition - Spectroscopy - Spectrum -	3	PPT
	types of Spectroscopy - UV spectroscopy -		presentation,
	Basic principles of UV spectroscopy – energy		Chalk and
	level diagram (electronic transition).		Talk, Video
	b. Important terms used in UV – visible	3	presentation
	spectroscopy – Chromophore – Auxochrome –		
	bathochromic shift – hypsochromic shift –		
	hyperchromic effect – hypochromic effect –		
	application of UV spectroscopy.		
	c. IR spectroscopy – Theory of IR	3	
	spectroscopy - Stretching and bending		
	vibration of linear and non – linear molecule -		
	example – application of IR spectroscopy.		
	d. Identification of simple organic molecules -	3	
	ethanol and dimethyl ether, acetaldehyde and		
1			
	acetone, ethylene and acetylene, cis - 2 -		
	acetone, ethylene and acetylene, cis -2 – butene and trans -2 – butene, methylamine,		

Course designed by

Dr. G.N. Kousalya, Dr.A.Sahaya Raja and Dr.M.Pandeeswaran

Programme	B.Sc.Chemistry	Programme Code	U	CH	
Course Code	20UCHA4P	Number of Hours/Cycle	2		
Semester	IV	Max. Marks	10	0	
Part		Credit			
Allied Practical					
Course Title	Organic Analysis	5	L	Т	Р
Cognitive Level		Upto K4	-	-	30

The lab course describes the analysis of organic compounds and presence of elements and its characteristics to develop the skill of experimenting.

Qualitative Analysis of Organic Compounds

- a. Identification of acidic, basic, phenolic, and neutral organic substances.
- b. Detection of N, S and halogens.
- c. Test for aliphatic and aromatic nature of substances.
- d. Test for saturation and unsaturation.
- e. Identification of functional groups:

i) Carboxylic acids ii) Phenols iii) Aldehydes iv) Ketones v) Esters vi) Carbohydrates vii)Amines viii) Amides ix) Halogen compounds f. Preparation of derivatives for the functional groups

After completion of this course, the students will be able to:

CO1	Identify aliphatic and aromatic compounds
CO2	Detect the elements
CO3	Differentiate saturation and unsaturation compounds
CO4	Confirm the functional groups

Scheme of Evaluation (Max.marks100)

Internal Assessment 40 Marks

Regularity	10 marks
Class Test	20 marks
Observation Note	10 marks
Total	40 marks

External Examination: 60 Marks (3 hours)

Record Note	10 Marks
Element present	8 Marks
Aliphatic/Aromatic	6 Marks
Saturated/Unsaturated	6Marks
Functional group	15 Marks
Viva voce	10 Marks
Report	5 Marks

Programme	B.Sc. Chemistry	Sc. Chemistry Programme Code			CH			
Course Code	20UCHC51	51 Number of Hours/Cycle						
Semester	V	Max. Marks						
Part	III	I Credit						
	Core Course VII							
Course Title	0	Organic Chemistry-III L		Т	Р			
Cognitive Level	Up to K3		60	-	-			

This Course mainly deals with Aromatic Hydrocarbons, Molecular Rearrangements, Aromatic Aldehydes, Phenols, Acids, Principles and Application of Spectroscopy, Alkaloids and Terpenoids, will be conducted in detail.

Unit I	Aromatic Hydrocarbons	12Hours
	a.Aromaticity – Definition, criteria for aromaticity and	
	Huckel's rule	
	b. Preparation of benzene from phenol, acetylene and by	
	decarboxylation reactions: Mechanism of Electrophilic	
	substitution reaction- nitration, sulphonation, halogenations,	
	Friedel-Crafts alkylation and acylation	
	c. Mechanism of aromatic nucleophilic substitution,	
	unimolecular, bimolecular and benzyne mechanisms.	
	d. Directive influence of substituents based on electronic	
	effects: Disubsititution reactions of aromatic compounds,	
	orientation and reactivity - Trisubstituted benzenes - Steric	
	hindrance and rules for trisubstitution in benzene.	
	e. Preparation, properties and uses of Toluene, Xylene and	
	Mesitylene.	
	f. Aryldiazoniumsalts:Preparation and synthetic applications of	
	benzene diazonium chloride	
Unit II	Molecular Rearrangements	12 Hours
	a.Rearrangements to Electron Deficient Carbon: Pinacol -	
	Pinacolone, Benzil-Benzilic acid, Wagner- Meerwein, Dienone	
	– Phenol and Wolff rearrangements.	
	b.Rearrangement to Electron Deficient	
	Nitrogen:Beckmann,Hofmann, Curtius, Lossen and Schmidt	
	rearrangement	
	c. Rearrangement to Electron Deficient Oxygen: Baeyer-	
	Villiger oxidation, cumenehydroperoxide - phenol	
	inger onderon, contentinger operation	
	rearrangement, Dakin reaction.	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy –	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy – Cope rearrangement	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy – Cope rearrangement e.Aromatic Rearrangementsfrom oxygen to ring Carbon:Fries	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy – Cope rearrangement e.Aromatic Rearrangementsfrom oxygen to ring Carbon:Fries and Claisenrearrangement	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy – Cope rearrangement e.Aromatic Rearrangementsfrom oxygen to ring Carbon:Fries and Claisenrearrangement f. Rearrangement to Carbanion intermediate: Favorskii	
	rearrangement, Dakin reaction. d. SigmatropicRearrangements:Benzidine, Cope and Oxy – Cope rearrangement e.Aromatic Rearrangementsfrom oxygen to ring Carbon:Fries and Claisenrearrangement f. Rearrangement to Carbanion intermediate: Favorskii rearrangement.	

	a. Aromatic aldehydes: Benzaldehyde – mechanism of					
	cannizzaro, perkins, claisen, knoevenagal reaction and benzion					
	condensation.					
	b. Phenols: Acidity of phenols – effect of substituents on the					
	acidity of phenol mechanism of Kolbe's reaction, Reimer					
	Tiemann reaction and Gatterman synthesis.					
	c. Aromatic carboxylic acids: Effect of substituents on acidic					
	character - preparation, properties of salicylic acid, anthranilic					
	acid, phthalic acid and cinnamic acid.					
	d. Aromatic sulphonic acids: preparation, properties and uses of					
	benzene sulphonic acid, saccharin, chloramine – T					
Unit IV	Principles and Application of Spectroscopy	12 Hours				
	a. UV : Introduction - Types of electronic transition -					
	absorption laws – bathochromic shift and hypsochromic shift –					
	hyperchromic and hypochromic effect – applications of UV to					
	organic compounds – Woodward Fieser rule – calculation of					
	$\lambda_{ m max}$.					
	b. IR: Introduction - Instrumentation - Mode of vibration -					
	overtone and combination bands – applications of IR to organic					
	compounds – finger print region – effect of hydrogen bond.					
	c. NMR: Introduction – chemical shift – shielding and					
	deshielding effects - factors influencing chemical shift -					
	solvent used – splitting of signals – coupling constants NMR					
	spectra of ethanol and anisole. Simple problems involving the					
	application of UV, IR and PMR spectroscopy.					
Unit V	Alkaloids and Terpenoids	12 Hours				
	a. Alkaloids: Definition - occurrence and extraction of					
	alkaloids-general methods for determining the structure of					
	alkaloids – classification of alkaloids – structure and synthesis					
	of following alkaloids – conine, piperine, nicotine and					
	papavarine.					
	b. Terpenoids:Introduction, classification, occurrence and					
	isolation – general properties – isoprene rule – general methods					
	of determining structure – synthesis. Properties and structure of					
	citral, geranial, terpeniol, menthol and camphor.					

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

- 1. Soni P.L., (2019), Text book of Organic Chemistry, Sultan Chand & Sons
- 2. Arun Bahl and Bahl B.S., (2019), *Text Book for Organic Chemistry*, S.Chand& Company Ltd, New Delhi.

Reference Books

- 1. M.K.Jain, S.C.Sharma, Modern Organic Chemistry (Vishal Publications) New Delhi
- 2. K.S.Tewari and N.K.Vishnoi, (2011), *Textbook of Organic chemistry*, Vikas Publishing House Pvt Ltd
- 3. Jerry March, (2015), *Reaction Mechanism of Organic compounds*. Wiley, India Edition7th
- 4. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee., (2011), *Organic Chemistry*, Pearson Publishers, New Delhi, 7th Ed.,

5. Y.R.Sharma 4thEdition Elementary Organic Spectroscopy S.Chand& Company Ltd,

E-Resources:

- 1. https://uscibooks.aip.org/wp-content/uploads/mcquarrie_interH_final.pdf
- 2. https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chap ter%2011.pdf
- 3. https://ncert.nic.in/textbook/pdf/lech203.pdf
- 4. https://mazams.weebly.com/uploads/4/8/2/6/48260335/spectroscopyovrview.pdf
- 5. https://link.springer.com/book/10.1007/978-94-011-2144-6

Course outcome

On completion of the course, students will be able to

CO1	Explain the basic concept of aromaticity, aromatic electrophilic substitution and					
	synthesis of some important aromatic compounds					
CO2	Reveal the types of rearrangement reactions and its synthetic applications					
CO3	Gain knowledge of mechanism, preparations, properties and importance of					
05	Aromatic aldehydes, Phenols, Aromatic carboxylic acids, Aromatic sulphonic acids					
COA	Gain knowledge on general basic principles of spectroscopy.Students can acquire					
04	knowledge on UV, IR, NMR spectroscopy and its applications					
CO5	Gives about the classification, structure and properties of Alkaloids, Terpenoids					

Mapping of Programme outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	1	1	2	2	2	2	1	1	1	1	1	1
CO2	2	2	1	2	2	2	1	1	1	1	1	1
CO3	2	2	2	2	2	3	1	2	1	1	1	1
CO4	1	2	3	2	2	2	1	2	1	2	1	1
CO5	2	1	2	2	3	2	1	2	1	1	1	1

1-Low

2-Moderate

3-High

Articulation Mapping-K Levels with Course Outcomes (COs)

			Section	I A	Section B	Section C			
Units	Units COs K-Level		MCQ	MCQs		Either/or Choice		Open Choice	
			No. of Questions	K-Level	No. of Questions	No. of Questions			
1	CO1	Up to K2	2	K1 & K2	K2 & K2	1(K2)			
2	CO2	Up to K3	2	K1 & K2	K2 & K2	1(K3)			
3	CO3	Up to K2	2	K1 & K2	K2& K2	1(K2)			
4	CO4	Up to K3	2	K1 & K2	K2 & K2	1(K3)			
5	CO5	Up to K3	2	K1 & K2	K2& K2	1(K3)			

No. of Questions to be asked	10	10	5
No. of Questions to be answered	10	5	3
Marks for each Question	1	4	10
Total Marks for each Section	10	20	30

K1-Remembering and recalling facts with specific answersK2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (open choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	20	65	65%	65%
K3		-	30	30	30%	30%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Aromatic Hydrocarbons	12 Hours	Mode
	a.Aromaticity – Definition, criteria for aromaticity, Huckel's rule.	2	Chalk and
	b. Preparation of benzene from phenol, acetylene and by decarboxylation reactions: Mechanism of Electrophilic substitution reaction- nitration, sulphonation, halogenations, Friedel-Crafts alkylation and acylation	2	talk, Power point presentation
	c. Mechanism of aromatic nucleophilic substitution, unimolecular, bimolecular and benzyne mechanisms.	2	
	d. Directive influence of substituents based on electronic effects: Disubstitution reactions of aromatic compounds, orientation and reactivity - Trisubstituted benzenes – steric hindrance and rules for trisubstitution in benzene.	2	
	e. Preparation, properties and uses of toluene,		
	xylene and mesitylene.	2	
	f. Aryldiazoniumsalts: Preparation and synthetic applications of benzene diazonium chloride	2	
Unit II	Molecular Rearrangements	12 Hours	
	a. Rearrangements to Electron Deficient Carbon: Pinacol – Pinacolone, Benzil-Benzilic acid, Wagner- Meerwein, Dienone – Phenol and Wolff rearrangements.	3	

	b. Rearrangement to Electron Deficient Nitrogen: Beckmann, Hofmann, Curtius, Lossen and	3	
II	Schmidt rearrangement		Chalk and
	c Rearrangement to Electron Deficient Oxygen:		talk, Power
	Baever-Villiger oxidation cumenehydroneroxide	2	point
	- phenol rearrangement Dakin reaction	2	presentation
	d. Sigmatropic rearrangements: Benzidine, Cope		
	and Oxy – Cope rearrangement	1	
	e.Aromatic Rearrangements		
	from oxygen to ring Carbon: Fries and Claisen	2	
	rearrangement		
	f. Rearrangement to Carbanion intermediate:		
	Favorskii rearrangement.	1	
Unit III	Aromatic aldehydes, Aromatic phenols,	12 Hours	
	Aromatic Acids		
	(a)Aromatic aldehydes : Benzaldehyde –		
	mechanism of cannizzaro, perkins, claisen,	3	Chalk and
	knoevenagal reaction and benzion condensation.		talk,
	b. Phenols: Acidity of phenols - effect of		Powerpoint
	substituents on the acidity of phenol mechanism		presentation
	of Kolbe's reaction, Reimer Tiemann reaction and	3	
	Gatterman synthesis.		
	c. Aromatic carboxylic acids: Effect of		Chalk and
	substituents on acidic character - preparation,		talk,
	properties of salicylic acid, anthranilic acid,	3	Powerpoint
	phthalic acid and cinnamic acid.		presentation
	d. Aromatic sulphonic acids: preparation,		
	properties and uses of benzene sulphonic acid,		
	saccharin, chloramine – T.	3	
Unit IV	Principles and Application of Spectroscopy	12 Hours	
	a . (i)UV : Introduction: Type of electronic		
	transition – absorption laws – bathochromic shift		
	and hypsochromic shift –	4	Chalk and
	(ii)hyperchromic and hypochromic effect -		talk, Power
	applications of UV to organic compounds -		point
	Woodward Fieser rule – calculation of λ_{max} .		presentation
	h (i)IR : Introduction : Instrumentation Mode of		
	vibration – overtone and combination bands -		
	(iii) Applications of IP to organic compounds	Δ	
	finger print region - effect of hydrogen bond	7	
	c NMR : Introduction chemical shift shielding		
	and deshielding effects _ factors influencing	Л	
	chemical shift $_$ solvent used $_$ solutions influencing	4	
	- coupling constants		
	NMR spectra of othernol and anisola Cimple		
	problems involving the application of UV ID and		
	PMR spectroscopy		
Linit V	Alkaloids And Ternanoids	12 Hours	
	Aikalolus Allu Terpellolus	12 HOURS	

a. ex (i ot (sy p	.(i)Alkaloids: Definition – occurrence and xtraction of alkaloids- ii)general methods for determining the structure f alkaloids – (iii) Classification of alkaloids – structure and ynthesis of following alkaloids – conine, iperine, nicotine and papavarine.	6	Chalk and talk, Power point presentation
b. or (i (i sy	 a.(i) Terpenoids :Introduction, classification, accurrence and isolation – b.(ii) General properties – isoprene rule b.(iii) General methods of determining structure – ynthesis. Properties and structure of citral, geranial, terpeniol, menthol and camphor. 	6	

Course Designed byMr.S.Kannan,, Dr.A.Sahaya Raja and Mrs.V.Vanitha

Programme	B.Sc. Chemistry	Programme code	U	СН		
Course Code	20UCHC52	Number of Hours/cycle	4	4		
Semester	V	Max.Marks	10	0		
Part	III	Credit	4			
	Core C	Course VIII				
Course Title Inorganic Chemistry III					Т	Р
Cognitive level upto K3					-	-

The objective of the course is to understand the concept of Nuclear reaction and application of radioisotopes, fundamentals and importance of Bio-inorganic chemistry, and also known about the Stereochemistry of Inorganic complexes and preparation, properties of Interhalogen compounds and Pseudohalogens.

Unit 1	Nuclear Chemistry I	12 Hours
	Introduction - composition of nucleus and nuclear forces - nuclear	
	stability – mass defect – binding energy – packing fraction – N/P ratio –	
	magic numbers – nuclear models – liquid drop – Shell and collective	
	model. Isotopes – detection and separation – deviation of atomic weights	
	from whole numbers – isobars, isotones and isomers – Radioactive decay	
	and equilibrium - nuclear isomerism - internal conversion. Nuclear Q-	
	value – threshold energy – cross sections, types of reactions – fission and	
	fusion – modes of radioactive decay.	
Unit 1I	Nuclear Chemistry II	12 Hours
	Natural and induced radioactivity – radioactive decay – half-life period –	
	radioactive displacement law - radioactive series - Radioactive	
	techniques - radioactive series including neptunium series - group	
	displacement law – Rate of disintegration and half-life period – Average	
	life period. Artificial radioactivity - induced radioactivity - uses of	
	radioisotopes - nuclear energy - nuclear reactors - nuclear fission and	
	fusion – fission products and fission yields – Spallation – photonuclear	
	and thermo nuclear reactions - energy source of the sun and stars -	
	carbon dating – rock dating - Radioactive waste disposal – applications of	
	nuclear science in agriculture, biology and medicine - Atomic power	
	projects in India.	
Unit 1II	Bio-Inorganic Chemistry	12 Hours
	Myoglobin and Hemoglobin – role of Myoglobin in biological systems -	
	Cooperative effect, Hill constant, Bohr effect- Explanation for	
	cooperative effect in hemoglobin - metalloenzymes - Inhibition and	
	poisoning of enzymes - Role of alkali and alkaline earth metal ions in	
	biological systems – Sodium-Potassium pump – Calcium pump –	
	Biological functions and toxicity of some elements – 4 biological fixation	
	of nitrogen.	
Unit 1V	Non- Aqueous Solvents	12 Hours
	Classification of solvents – Characteristic properties of a solvent – Liquid	
	ammonia - Chemical reactions in liquid ammonia - Solutions of alkali	
	metals in liquid ammonia - Liquid hydrogen fluoride - Chemical	
	reactions in liquid hydrogen fluoride - Sulphuric acid - Chemical	
	reactions of sulphuric acid – Liquid dinitrogen tetroxide – Liquid sulphur	

	dioxide – Molten salts as non-aqueous solvents.				
Unit V	Interhalogen Compounds And Pseudohalogens				
	Basic properties of Iodine - Interhalogen compounds, some important				
	interhalogen compounds – polyhalide ions and polyhalides –				
	pseudohalide ions, pseudohalides and pseudohalogens – Cynogen (CN) ₂ –				
	Thiocyanogen (SCN) ₂ – Selenocyanogen (SeCN) ₂ – Oxycyanogen				
	(OCN) ₂ .				

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books:

- **1.** B.R. Puri, L.R. Sharma and K.C. Kalia, (2002), Principles of Inorganic Chemistry, 33rd Edition, Vishal Publication.
- 2. Satya Prakash, (2018), Advanced Inorganic Chemistry, R.D.Madan, Volume 1, S. Chand and Sons, New Delhi.
- **3.** R. Gopalan, (2020), Text book of Inorganic Chemistry, Kindle Edition, Universities Press India Ltd., Hyderabad.
- 4. P.L. Soni, M. Katyal, (2019), Text Book of Inorganic Chemistry, Sultan Chand & Sons.

Reference Books

- 5. J.E. Huheey, E.A. Keitler and R.L. Keitler, (2013), Inorganic Chemistry Principles of Structure and Reactivity, 4th Edition, Pearson Education, New Delhi.
- 6. F.A. Cotton and G. Wilkinson, (2021), Advanced Inorganic Chemistry, An Indian Adaptation, Wiley India Pvt.Ltd., New Delhi.
- 7. R.D. Madan, (2019), Modern Inorganic chemistry, S.Chand and Sons.

E-Resources

https://web.gccaz.edu/~lisys52871/00152note/nuclearchangnotes.pdf https://schools.aglasem.com/55790/ https://www.youtube.com/watch?v=VFHFPdYzQZE https://www.youtube.com/watch?v=4gLlIZ8b2Ps https://www.youtube.com/watch?v=0hjUdZ2nIhQ

Course outcomes

On completion of the course, students will be able to

CO1	Become familiar with the concepts of nuclear reactions.
CO2	Gain knowledge about atom bomb, hydrogen bomb and applications of
	radioisotopes.
CO3	Learn the fundamentals of bioinorganic chemistry.
CO4	Gain knowledge in the concept of stereochemistry in inorganic complexes.
CO5	Learn about preparation and properties of interhalogen compounds.

Mapping of Programme outcomes with Course Outcomes

	PSO	PSO1	PSO1	PSO1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO	2	2	3	2	2	2	1	1	1	1	1	1
1												
CO	2	1	1	2	1	2	2	1	1	1	1	1
2												
CO	2	1	1	1	2	1	1	2	1	1	1	1
3												
CO	2	2	3	2	2	2	2	3	1	1	1	1
4												
CO	2	2	3	2	3	2	1	2	2	1	1	1
5												

Articulation Mapping-K Levels with Course Outcomes (COs)

			Section A		Section B	Section C
			MCC	Qs	Either/or Choice	Open Choice
Units	COs	K-Level	No. of Questions K-Level N		No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 & K2	K2 & K2	K3
2	CO2	Up to K3	2	K1 & K2	K2 & K2	K3
3	CO3	Up to K3	2	K1 & K2	K2 & K2	K3
4	CO4	Up to K3	2	K1 & K2	K2 & K2	K3
5	CO5	Up to K3	2	K1 & K2	K2 & K2	K3
No. of Questions to be asked		10		10	5	
No. of Questions to be		10		5	3	
answered						
Marks for each Question			1		4	10
Total N	larks for ea	ch Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (open choice)	Total Mark s	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan							
Unit	Nuclear Chemistry I	12 Hours	Mode				
	a) Introduction - composition of nucleus and	2					
	nuclear forces - nuclear stability - mass defect	2					
	b) Binding energy – packing fraction – N/P ratio –						
	magic numbers - nuclear models - liquid drop	2					
	– Shell and collective mode		Chalk				
	c) Isotopes – detection and separation – deviation		and talk				
	of atomic weights from whole numbers –	2	Power				
Ι	isobars, isotones and isomers	2	point				
	A) Dedicective descended and initiative muchan		presentati				
	a) Radioactive decay and equilibrium – nuclear	2	on				
	isomerism – internal conversion.	2					
	e) Nuclear Q-value – threshold energy – cross	2					
	sections	2					
	f) Types of reactions – fission and fusion – modes	r					
	of radioactive decay.	2					
	Nuclear Chemistry II	12 Hours					
	a) Natural and induced radioactivity – radioactive						
	decay _ half-life period _ radioactive	2					
	displacement law	2					
	b) Radioactive series – Radioactive techniques –						
	radioactive series including neptunium series –	2					
	group displacement law	2					
	c) Rate of disintegration and half-life period –		C1 11				
	Average life period. Artificial radioactivity –		Chalk				
	induced radioactivity – uses of radioisotopes –	2	and talk,				
II	nuclear energy – nuclear reactors		Power				
	d) Nuclear fission and fusion – fission products		point				
	and fission yields – Spallation – photonuclear	2	on				
	and thermo nuclear reactions	_					
	e) Energy source of the sun and stars – carbon						
	dating – rock dating - Radioactive waste	2					
	disposal						
	f) Applications of nuclear science in agriculture,						
	biology and medicine - Atomic power projects	2					
	in India.						
	Non-Aqueous Solvents	12 Hours					
	a) Classification of solvents – Characteristic		Chalk				
	properties of a solvent – Liquid ammonia	3	and talk,				
	b) Chemical reactions in liquid ammonia -		Power				
	Solutions of alkali metals in liquid ammonia	3	point				
III	c) Liquid hydrogen fluoride - Chemical reactions		presentati				
	in liquid hydrogen fluoride – Sulphuric acid –	3	on				
	Chemical reactions of sulphuric acid						
	d) Liquid dinitrogen tetroxide - Liquid sulphur						
	dioxide - Molten salts as non-aqueous solvents.	3					

	Inter halogen compounds and Pseudohalo- gens	12 Hours	
V	a) Basic properties of iodine – Interhalogen compounds.	2	Chalk and talk,
	b) Some important interhalogen compounds – polyhalide ions and polyhalides.	2	Power point presentati on, Group
	c) Pseudohalide ions, pseudohalides and pseudohalogens.	2	
	d) Cynogen (CN) ₂ – Thiocyanogen (SCN) ₂ .	3	
	e) Selenocyanogen (SeCN) ₂ – Oxycyanogen (OCN) ₂ .	3	n

Course Designed by:Mr.T.Srinivasan

Programme	B.Sc.Chemistry	Programme Code		UCE	I		
Course Code	20UCHE51	Number of Hours/Cycle		4			
Semester	V	Max. Marks		100			
Part	III	Credit		4			
Core Elective Course I A							
Course Title	Nanose	cience and Technology	L	Т	Р		
Cognitive	Up to K3		60	-	-		
Level							

The course enables the students to provide the basic idea about Nanochemistry, Nanomaterials, Fabrication of Nanostructured materials, Synthesis of Nanomaterials and Tools & Techniques of Nanomaterials and its applications.

Unit I	Introduction to Nanotechnology	12Hours				
	Introduction - Basics of Nanochemistry - Definitions of					
	Nanoparticles, Nanomaterials, Nanochemistry (Nanoscience) and					
	Nanotechnology - Richard Feynman's idea of Nanotechnology -					
	Characteristics of Nanotechnology – Distinction between					
	Nanoparticles, Molecules and Bulk materials - Applications of					
	Nanotechnology – Risk (Toxic effects) of nanomaterials.					
Unit II	Nanomaterials	12 Hours				
	Nanomaterials - Classification based on dimensions - One					
	dimensional (1D), Two dimensional (2D), Three dimensional (3D)					
	and Zero dimensional (0D) Nanostructured materials -					
	Classification based on pore dimensions-Microporous materials,					
	Mesoporous materials and Macroporous materials - Size dependent					
	properties - Chemical properties, Thermal properties, Electronic					
	properties, Optical properties and Magnetic properties - Some					
	important Nanomaterials - Fullerenes, Carbon Nanotubes (CNTs),					
	Quantum Dots, Dendrimers, Nanocomposites, and Nanomachine.					
Unit III	Fabrication of Nanostructured Materials	12 Hours				
	Techniques to synthesize Nanomaterials - Top Down Approach and					
	Bottom up Approach - Comparison of the Two approaches -Top					
	Down approach process – High energy ball milling – Lithography–					
	Epitaxy- Chemical vapour Deposition (CVD) - Types of Chemical					
	vapour Deposition process - Physical Vapour Deposition -					
	Evaporation, Sputtering and Laser ablation – Electro deposition –					
	Bottom up approach process - Sol -gel process(Precipitation					
	process) – gas-phase Condensation – Chemical Vapour					
	Condensation (CVC) - Thermolysis - Solvothermal methods and					
	Hydrothermal methods- Self Assembly of Materials - Molecular					
	self-assembly- Self-assembled monolayers (SAMs) - Types of					
	SAMs – Preparation of SAMs and Application of SAM					
Unit IV	Synthesis and Applications of Nanomaterials	12 Hours				
	Synthesis of Nanomaterials:					
--------	--	----------				
	Introduction – Types of nanomaterials – Preparation, properties and					
	applications of Nanorods, Nanoclusters, Nanofibers, Nanoclays					
	andTypes of Nanoparticles - Gold, Silver, Zinc oxide					
	(ZnO),Copper oxide (CuO) and Titania(TiO ₂) –Synthesis of					
	Nanoparticlesby chemical reduction method -Nanoporous					
	materials- Synthesis by sol-gel method- Nanowires- Synthesis by					
	VLS mechanism.					
	Applications of Nanomaterials:					
	Applications of Nanomaterials inTextile Industry, Nanomedicine,					
	Biological applications and Nanomaterials in Communication					
	sector					
Unit V	Carbon Nanostructures and Tools of Nanomaterials	12 Hours				
	Carbon Nanostructures:					
	Carbon Nanotubes (CNTs) - Types of Carbon nanotubes - Singled					
	-walled nanotubes (SWNTs) and Multi - walled nanotubes					
	(MWNTs) - Synthesis of Carbon Nanotubes - Pyrolysis of					
	hydrocarbons, Laser evaporation, carbon arc method and Chemical					
	vapour deposition – Properties of Carbon Nanotubes – Application					
	of Carbon nanotubes.					
	Tools of Nanomaterials:					
	Electron microscopes - Scanning Electron microscopy (SEM) -					
	Transmission electron microscopy(TEM) - Difference between					
	SEM and TEM -Atomic Force microscopy (AFM) - Advantages					
	and Disadvantages of AFM over SEM - Ultraviolet-Visible					
	spectroscopy – X-ray Diffraction (XRD) – Light Scattering					
	spectroscopy – X-ray Diffraction (XRD) – Light Scattering methods – Dynamic light Scattering (DLS) and Zeta Potential					

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

- 2. Thomas Vaghese, Balakrishna.K.M, (2021), Nanotechnology (An Introduction to synthesis, properties and Applications of Nanomaterials), Atlantic Publishers & Distributors (P) Ltd, New Delhi.
- 3. Choudhary.K.K,(2018) *Nanoscience and Nanotechnology*, Narosa Publishing House Pvt. Ltd, New Delhi

Reference Books

- 4. Rakesh Rathi.Er,(2018), *Nanotechnology (Technology Revolution of 21st Centur)*, S.Chand and Company Ltd, New Delhi
- 5. Jain and Jain., (2018), *Engineering chemistry*, Dhanpat Rai Publications Pvt. Ltd., New Delhi.
- 6. Manasi Karkare., (2017), *Nanotechnology* (*Fundamentals and Applications*), I.K.International Publishing House Pvt.Ltd, New Delhi

E-Resources:

1.https://www.kth.se/social/upload/54062f97f2765416cecdfd74/HT14-

2655_Lecture%201.pdf

2.http://www.gcekjr.ac.in/pdf/lectures/2020/7166--_2nd%20Semester_ALL.pdf

3.https://ccsuniversity.ac.in/bridgelibrary/pdf/L3%20Synthesis%20of%20Nanostructured %20Materials%20Prof%20BPS.pdf

4.https://ocw.mit.edu/courses/mechanical-engineering/2-674-micro-nano-engineering-laboratory-spring-2016/lecture-notes/MIT2_674S16_Lec7Nano.pdf

5.https://www.researchgate.net/publication/324931176_Characterization_Tools_and_Tec hniques for_Nanomaterials

Course outcome

On the successful completion of the course, students will be able to

CO1	Clearly brings about the Concepts and applications Nanotechnology
CO2	Classify the Nanomaterials and explain the characteristics, Properties and uses of Nanomaterials
CO3	Reveals the types of Fabrication of Nanostructured Materials
CO4	List out the different methods of Synthesis Nanomaterials and its applications
CO5	Explain the Working principles of Tools and Techniques of Nanomaterials

Ma	pping	of Prog	gramm	e outc	omes v	with Co	ourse (Dutcom	es

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	1	2	2	1	3	2	1	-	1	-	-
CO2	3	2	1	2	1	3	2	1	-	1	-	-
CO3	3	2	2	2	1	3	3	2	-	1	-	1
CO4	3	2	2	2	1	3	3	2	-	1	-	1
CO5	3	1	1	2	1	3	1	2	-	1	-	1

1- Low 2 - Moderate 3 - High Articulation Mapping-K Levels with Course Outcomes(COs)

			Sectio	n A	Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K2	2	K1 & K2	K2 & K2	1(K2)
3	CO3	Up to K3	2	K1 & K2	K2 & K2	1(K3)
4	CO4	Up to K3	2	K1 & K2	K2 & K2	1(K3)
5	CO5	Up to K3	2	K1 & K2	K2& K2	1(K3)
No. of	Questions	to be asked	10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total I	Marks for e	each Section	10		20	30

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application Oriented-Solving problems

K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated
	(No Choice)	(Either/or)	Open choice	Marks	without	(Rounded
					choice	off)
K1	5	-		5	5%	5%
K2	5	40	20	65	65%	65%
K3			30	30	30%	30%
Total Marks	10	40	50	100	100%	100%

Distribution of Section-wise Marks and K Levels

	Lesson Plan		
Unit I	Introduction to Nanotechnology	12 Hours	Mode
	a)Introduction – Basics of Nanochemistry –	3	
	Definitions of Nanoparticles, Nano- materials,		
	Nanochemistry (Nanoscience) and Nanotechnology		Chalk and
	b)Richard Feynman's idea of Nanotechnology -		Talk
	Characteristics of Nanotechnology	3	PPI
	c)Distinction between Nanoparticles, Molecules and		n
	Bulk materials - Size dependent properties of	3	Seminar
	Nanomaterials		Group
	Applications of Nanotechnology - Risk (Toxic		discussion
	effects) of nanomaterials.		
		3	
Unit II	Nanomaterials	12 Hours	Mode
	a)Nanomaterials – Classification based on		
	dimensions –One dimensional (1D),Two	4	
	dimensional (2D), Three dimensional (3D) and Zero	4	Chalk and
	dimensional (0D) nanostructured materials		
	b)Classification based on pore dimensions-		presentatio
	Microporous materials, Mesoporous materials and		n
	Macroporous materials - Size dependent properties		Seminar
	– Chemical properties, Thermal properties,	4	Group
	Electronic properties, Optical properties and	4	discussion
	Magnetic properties		
	Some important Nanomaterials - Fullerenes, Carbon	4	
	Nanotubes (CNTs), Quantum Dots, Dendrimers,	4	
	Nanocomposites, and Nanomachine		
Unit III	Fabrication of Nanostructures Materials	12 Hours	Mode
	a)Techniques to synthesize Nanomaterials - Top	2	Chalk and
	Down Approach and Bottom up Approach -		Talk
	Comparison of the Two approaches		PPT
	c)Top Down approach process - High energy ball		presentatio
	milling - Lithography- Epitaxy- Chemical vapour	2	n Seminar
	Deposition (CVD) - Types of Chemical vapour		Group
	Deposition process – Physical Vapour Deposition –		discussion
	Evaporation,	4	
	c)Bottom up approach process – Sol -gel		
	process(Precipitation process) – gas-phase		
	Condensation - Chemical Vapour Condensation		
	(CVC) - Thermolysis - Solvothermal methods and		
	Hydrothermal methods		

Lesson Plan

	d) Self Assembly of Materials – Molecular self-	4	
	Tupes of SAMe Properties of SAMe and	4	
	Application of SAM		
Unit IV	Synthesis and Applications of Nanomaterials	12 Hours	Mode
	a) Synthesis of Nanomaterials:	12 110015	112040
	Introduction – Types of nanomaterials – Preparation, properties and applications of Nanorods, Nanoclusters, Nanofibers, Nanoclays	3	Chalk and Talk PPT presentatio
	b)Types of Nanoparticles – Gold, Silver, Zinc oxide (ZnO), Copper oxide (CuO) and Titania (TiO ₂) – Synthesis of Nanoparticles by chemical reduction method –Nanoporous materials– Synthesis by sol- gel method– Nanowires– Synthesis by VLS mechanism	5	n Seminar Group discussion
	c) Applications of Nanomaterials: Applications of Nanomaterials Textile Industry, Nanomedicine, Biological applications and Nanomaterials in Communication sector.	4	
Unit V	Carbon Nanostructures and Tools of Nanomaterials	12 Hours	Mode
	a) Carbon Nanostructures:	2	
	a) Carbon Manostructures.	2	
	 Carbon Nanotubes (CNTs) – Types of Carbon nanotubes – Singled - walled nanotubes (SWNTs) and Multi - walled nanotubes (MWNTs) b)Synthesis of Carbon Nanotubes – Pyrolysis of hydrocarbons, Laser evaporation, carbon arc method and Chemical vapour deposition – Properties of Carbon Nanotubes – Mechanical properties, Electrical properties, Thermal properties, Vibrational properties and Kinetic properties – Application of Carbon nanotubes. 	3	Chalk and Talk PPT presentatio n Seminar Group discussion

Course Designed by: Dr.A.Sahaya Raja and Mr.C.Siva Kumar

Programme	B.Sc.Chemistry	Programme Code		UCE	[
Course Code	Course Code 20UCHE52 Number of Hours/Cycle						
Semester	V	Max. Marks		100			
Part	III Credit						
Core Elective Course IB							
Course Title	I	Analytical Chemistry	L	Т	Р		
Cognitive Level	Up to K3		60	-	-		

Preamble

The course enables the students to provide the basic idea about handling the laboratory techniques, instrumental analysis and analytical techniques, along with the methods of separation techniques and its applications in Analytical Chemistry

	a) Laboratory Hygiene and Safety: Storage and handling of	
	chemicals - carcinogenic chemicals - toxic and poisonous	
	chemicals – waste disposal – fume disposal – general	
	precaution for avoiding accidents - first aid techniques -	
	poisoning - methods to avoid poisoning - treatment for	
	specific poison – laboratory safety measures.	
	b) Methods of Purification: Steam distillation, Vacuum	
	distillation, Fractional distillation, Solvent extraction,	
	Crystallization and Sublimation	
	c) Error Analysis: Mean – Median – Standard deviation –	
	Coefficient of variation - Precision- Accuracy - Errors -	
	Types of Errors – Determinate Errors and Indeterminate Errors	
	– Rules for improving accuracy of Data – Students Q test –	
	Rejection of experimental data –Confidence limit –Significant	
	figures – graphical method of data analysis – Curve fitting –	
	Methods of least square – Correlation Coefficient and	
	Computation rules.	
Unit II	Qualitative And Quantitative Analysis	12 Hours
	a) Volumetric Analysis: Principle– Estimation using double	
	titration-Acidimetry and Alkalimetry – Redox Titrations –	
	Permanganometry – Precipitation titration – Mohr method–	
	Complexometric titration– EDTA titration.	
	b) Gravimetric Analysis: Methods of obtaining the precipitate	
	-Condition for Precipitation Choice of precipitant –	
	Advantages and Disadvantages of using organic precipitants –	
	Types of organic precipitants –Specific and Selective	
	precipitants –Sequestering Agents (Masking Agents) –Theory	
	of precipitation-Paneth- Fajans- Hann law –Steps of	
	Gravinieuric analysis – Formation of precipitate (Precipitation)	
	- Frecipitation from Homogeneous solution - Factors	
	ninuencing the solubility of precipitate – Contamination of	
	precipitates -co-precipitation -Post precipitation - Digestion	
	of precipitate washing of precipitate drying and ignition of	
Unit II	 Methods of least square – Correlation Coefficient and Computation rules. Qualitative And Quantitative Analysis a) Volumetric Analysis: Principle– Estimation using double titration-Acidimetry and Alkalimetry – Redox Titrations – Permanganometry – Precipitation titration – Mohr method– Complexometric titration– EDTA titration. b) Gravimetric Analysis: Methods of obtaining the precipitate –Condition for Precipitation Choice of precipitant – Advantages and Disadvantages of using organic precipitants – Types of organic precipitants –Specific and Selective precipitation-Paneth- Fajans- Hahn law –Steps of Gravimetric analysis – Formation of precipitate (Precipitation) – Precipitation from Homogeneous solution – Factors influencing the solubility of precipitate – Contamination of precipitates –Co-precipitation –Post precipitation – Digestion 	12 Hours

	c) Semimicro Qualitative Analysis: Aims of semi micro	
	qualitative analysis - types of reactions involved in qualitative	
	analysis - dry reactions - precipitation reactions -	
	complexation reactions - oxidation and reduction reactions -	
	Spot tests – Principles of Qualitative Analysis – Common ion	
	effect – Solubility product – Application of solubility product –	
	Interfering radicals–Removal of interfering ions in the analysis	
	of cations – Oxalate, tartrate, borate, fluoride, chromate,	
	cation testing on semi micro scale – Apparatus used in	
	Semimicro analysis	
Unit III	Electroanalytical And Thermoanalytical Methods	12 Hours
	a) Electroanalytical Methods: Potentiometric Titrations –	
	Principle – Redox Titration (FeSO ₄ Vs $K_2Cr_2O_7$) – Precipitation	
	Titration (AgNO ₃ Vs NaCl) – Advantages of Potentiometric	
	titrations - Conductometric Titration - Principle - Acid - Base	
	Titration (Strong acid (HCl) Vs Strong base (NaOH)) -	
	Advantages and Disadvantages of conductometric titration	
	b) Thermoanalytical Methods:	
	Thermogravimetric Analysis (TGA) – Principle –	
	Characteristics of good thermobalance design –Thermal	
	analysis of Silver Nitrate – methods of obtaining Thermograms	
	- Derivative Thermogravimetry (DTG) curve for copper	
	sulphate pentahydrate (CuSO ₄ .5H ₂ O) - Factors which	
	influence the thermogram - TGA instrument representation -	
	Precautions needed in the uses of Thermobalance –	
	Applications of Thermogravimetry – Thermogravimetric	
	analysis of Calcium Oxalate Monohydrate (CaC_2O_4, H_2O_1) -	
	Differential Inermal Analysis (DIA) – DIA instrument	
	Thermal Analysis of calcium Acetate Monohydrate – Study of	
	Organic reactions. Study of Catalysts. Decomposition of	
	Complexes and Trends in Ligand stabilities.	
Unit IV	Separation Techniques	12 Hours
	Definition-classification- general applications of	
	chromatography. Adsorption chromatography (Liquid-Solid	
	chromatography) –Column Chromatography and Ion Exchange	
	Chromatography – Applications. Partition chromatography	
	(Liquid-Liquid chromatography) – Paper Chromatography -	
	ReValue – Types of Paper Chromatography – Ascending Paper	
	Chromatography Descending Paper Chromatography and	
	Padial Paper Chromatography Thin Layer Chromatography	
	(TLC) Applications Cos Chromotography Gos Solid	
	(TEC) -Applications. Gas Chromatography –Gas-Solid	
	Chromatography (GSC) and Gas-Liquid Unromatography (GSC) and $Gas-Liquid Unromatography$	
	(GLC) – Comparison between GSC and GLC – Applications –	
	High Performance Liquid Chromatography (HPLC) –	
	Applications.	
Unit V	Analytical Techniques	12 Hours
	Colorimetry – Principle – Instrumentation and Working of	
	Colorimeter – Estimation of Iron by Colorimetry –	
	Applications of Colorimetry. Flame Photometry – Principle –	
1		
	Instrumentation and Working of Flame Photometer-	

Interference and limitations of flame photometry. UV-Visible	
Spectroscopy - Principle - Energy Level diagram - Types of	
Electronic transition involved in Organic Molecules-	
Important terms used in UV-Visible spectroscopy -	
Chromophores, Auxochrome - Some important definition	
related to change in wavelength and intensity(Red Shift, Blue	
Shift, Hyperchromic and Hypochromic effect) -	
Instrumentation and Working of UV-Visible	
Spectrophotometer - Applications. Infrared (IR) spectroscopy	
-Principle- Range of Infrared radiation - Molecular Vibrations	
- Fingerprint region - Types of Stretching and Bending	
vibrations - For Non-linear molecule (Illustration of Water)	
andFor linear molecule (Illustration of Carbondioxide) -	
Instrumentation and Working of IR Spectrophotometer -	
Applications. Atomic Absorption Spectroscopy (AAS) -	
Principle –Instrumentation and working of Atomic Absorption	
Spectrophotometer -Estimation of Nickel by Atomic	
Absorption Spectroscopy - Application and Limitations of	
AAS.	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books

- 1. Gopalan.R., Subramanian.P.S., & Rengarajan.K., (2019), "*Elements of Analytical Chemistry*", Sultan Chand & Sons, New Delhi.
- 2. Sharma.B.K.,(2016), "Instrumental Methods of Chemical Analysis", Goel Publishing House, Meerut.

Reference Books

- 1. Khopkar S.M.,(2012), *Basic concepts of Analytical chemistry*), New Age International Publishers, New Delhi
- 2. Kealey D and Haines P.J., (2002), *Instants Notes Analytical Chemistry*, Viva Books Pvt. Ltd, New Delhi Chennai
- 3. Douglas A. Skoog, DonaldM. West, F. James Holler and StanelyRCrouch, (2004), *"Fundamentals of Analytical Chemistry"*, Thompson Books, Bangalore.
- 4. Willard H.H., Merrit D. and John A Dean, (1966), "Instrumental methods of *Analysis*", D. Van Nostrand Company, New York.

E-Resources

- 1. https://www.ncbs.res.in/sitefiles/labsafety.pdf
- 2. https://www.embibe.com/exams/methods-of-purification-of-organic-compounds/
- 3. https://www.inorganicventures.com/icp-guide/accuracy-precision-mean-and-standard-deviation
- 4. http://copharmacy.nahrainuniv.edu.iq/am/wp-content/uploads/2017/02/3-Lec-Ana-Ch-1st-2010-Volumetric-Analysis.pdf
- 5. https://faculty.ksu.edu.sa/sites/default/files/unit_14-_gravimetric_analysis-subjects_autosaved.pdf
- 6. http://www.iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Manua l_for_Inorganic_semi-micro_qualitative_analysis.pdf
- https://www2.chemistry.msu.edu/courses/cem434/Chapter%2022%20%E2%80%93% 20Introduction%20to%20Electroanalytical%20Chemistry.pdf

- 8. https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.p df
- https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/222%20Chapter%20 4.pdf
- 10. https://kanchiuniv.ac.in/coursematerials/LECTURENOTESEIEPHASE2/Analytical% 20Instrumentation_KS.pdf

Course outcomes

On the successful completion of the course, students will be able to

CO1	Gives the safety measurements towards the laboratory techniques and brings about								
COI	terms and methods of finding error analysis towards analytical results								
	Do titrimetric techniques of acid/base titration, complexometric titration, redox								
CO2	titration andbrings about the methods of gravimetric analysis and Semimicro								
	Qualitative Analysis								
CO3	Gives the principles, Concepts and methods of Electroanalytical and								
005	Thermoanalytical techniques								
CO4	Explain the theoretical principles of various separation techniques in								
CU4	chromatography and typical applications of chromatographic techniques								
COF	Clearly brings about the principles, Concepts and instrumentation of selected								
005	analytical techniques and their applications								

Mapping of Programme outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
C01	3	2	2	2	1	3	3	2	-	1	-	1
CO2	3	3	2	3	1	3	3	1	-	1	-	1
CO3	3	2	2	2	1	3	3	2	-	1	-	-
CO4	3	2	3	2	1	3	3	2	-	1	-	-
CO5	3	2	2	2	1	3	3	2	-	1	-	-

1- Low

2 - Moderate

3 - High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			MCQs No. of Questions K-Level		Either/or Choice	Open Choice
Units	COs	K-Level			No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
3	CO3	Up to K3	2 K1 & K		2(K2 & K2)	1(K3)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
No. of asked	Question	s to be	10		10	5
No. of answe	Question red	s to be	10		5	3
Marks for each Question			1		4	10
Total Sectio	Marks for n	each	10		20	30

K1-Remembering and recalling facts with specific answers K2-Basic understanding of facts and stating main ideas with general answers

K3-Application Oriented-Solving problems

	Distribution of Section-wise Wai KS and K Levels												
K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated							
	(No Choice)	(Either/or)	Open choice	Marks	without	(Rounded							
					choice	off)							
K1	5	-		5	5%	5%							
K2	5	40	10	55	55%	55%							
K3			40	40	40%	40%							
Total	10	40	50	100	100%	100%							
Marks													

Distribution of Section-wise Marks and K Levels

Lesson Plan

Unit	Description	Hours	Mode
Ι	Introduction to Analytical Chemistry		
	a) Laboratory Hygiene and Safety: Storage and		
	handling of chemicals – carcinogenic chemicals – toxic		
	and poisonous chemicals - waste disposal - fume	4	
	disposal – general precaution for avoiding accidents –		
	first aid techniques - poisoning - methods to avoid		
	poisoning – treatment for specific poison – laboratory		Chalk and
	safety measures.		Talk
	b) Methods of Purification: Steam distillation,		PPT
	Vacuum distillation, Fractional distillation, Solvent	4	presentation
	extraction, Crystallization and Sublimation		Seminar
	c) Error Analysis: mean – Median – Standard		Group
	deviation - Coefficient of variation - Precision-		discussion
	Accuracy – Errors – Types of Errors – Determinate		
	Errors and Indeterminate Errors – Rules for improving		
	accuracy of Data – Students Q test – Rejection of		
	experimental data – Confidence limit – Significant	4	
	figures – graphical method of data analysis – Curve		
	fitting – Methods of least square – Correlation		
	Coefficient and Computation rules.		
Unit II	Qualitative and Quantitative Analysis		
	a) Volumetric Analysis: Principle – Estimation using		Chalk and
	double titration -Acidimetry and Alkalimetry - Redox		Talk
	Titrations – Permanganometry and Dichrometry –	4	PPT
	Precipitation titration – Mohr method – Iodometry –		presentation
	Estimation of Copper- Complexometric titration -		Seminar
	EDTA titration.		Group
	b) Gravimetric Analysis: Methods of obtaining the		discussion
	precipitate - Condition for Precipitation Choice of		
	precipitant – Advantages and Disadvantages of using		
	organic precipitants - Types of organic precipitants -		
	Specific and Selective precipitants – Sequestering		
	Agents (Masking Agents) - Theory of precipitation -		
	Paneth- Fajans- Hahn law – Steps of Gravimetric		
	analysis - Formation of precipitate (Precipitation) -	4	
	Precipitation from Homogeneous solution - Factors		
	influencing the solubility of precipitate –		
	Contamination of precipitates - Co-precipitation - Post		
	precipitation – Digestion of precipitate – washing of		
	precipitate – drying and ignition of precipitate		

	c) Semimicro Qualitative Analysis: Aims of semi						
	micro qualitative analysis – types of reactions involved in qualitative analysis – dry reactions – precipitation reactions - complexation reactions - oxidation and reduction reactions – Spot tests – Principles of Qualitative Analysis – Common ion effect – Solubility product – Application of solubility product – Interfering radicals – Removal of interfering ions in the analysis of cations – Oxalate, tartrate, borate, fluoride, chromate, phosphate, arsenite and arsenate – Preparation of solution for cation testing on semi micro scale – Apparatus used in Semimicro analysis.	4					
Unit III	Electroanalytical and Thermoanalytical Methods						
	a) Electroanalytical Methods: Potentiometric Titrations – Principle – Redox Titration (FeSO ₄ Vs $K_2Cr_2O_7$) – Precipitation Titration (AgNO ₃ Vs NaCl) – Advantages of Potentiometric titrations – Conductometric Titration – Principle – Acid - Base Titration (Strong acid (HCl) Vs Strong base (NaOH)) – Advantages and Disadvantages of conductometric titration.	4					
	b) Thermoanalytical Methods: Thermogravimetric Analysis (TGA) – Principle – Characteristics of good thermobalance design –Thermal analysis of Silver Nitrate – methods of obtaining Thermograms – Derivative Thermogravimetry (DTG) curve for copper sulphate pentahydrate (CuSO ₄ .5H ₂ O) – Factors which influence the thermogram – TGA instrument representation – Precautions needed in the uses of Thermobalance – Applications of Thermogravimetry – Thermogravimetric analysis of Calcium Oxalate Monohydrate (CaC ₂ O ₄ .H ₂ O).	4	Chalk and Talk PPT presentation Seminar Group discussion				
	Differential Thermal Analysis (DTA) – DTA instrument representation DTA of Calcium Oxalate Monohydrate – Thermal Analysis of calcium Acetate Monohydrate – Study of Organic reactions, Study of Catalysts, Decomposition of Complexes and Trends in Ligand stabilities.	4					
Unit IV	Separation Techniques						
	Definition-classification- chromatography. Adsorption chromatography (Liquid- Solid chromatography) – Column Chromatography and Ion Exchange Chromatography – Applications.4Partition chromatography – Applications.6Partition chromatography) – Paper Chromatography - Rf Value – Types of Paper Chromatography – Ascending Paper Chromatography – Descending Paper Chromatographypi						
	and Radial Paper Chromatography – Thin Layer Chromatography (TLC) - Applications.	3	Group discussion				
	(GSC) and Gas-Liquid Chromatography (GLC) –						
	Comparison between GSC and GLC – Applications. High Performance Liquid Chromatography (HPLC) –	32					

	Applications.		
Unit V	Analytical Techniques		
	Introduction – Type of Spectroscopy – Spectrum – Photophysical law – Lamberts's Law and Beer- Lambert's law – Application and Limitations of Beer- Lambert's law – Colorimetry – Principle – Instrumentation and Working of Colorimeter – Estimation of Iron by Colorimetry – Applications of Colorimetry.	2	
	Flame Photometry – Principle – Instrumentation and Working of Flame Photometer– Estimation of Sodium by Flame Photometry – Applications, Interference and limitations of flame photometry.	2	
	UV-Visible Spectroscopy – Principle – Energy Level diagram – Types of Electronic transition involved in Organic Molecules – Important terms used in UV- Visible spectroscopy – Chromophores, Auxochrome – Some important definition related to change in wavelength and intensity (Red Shift, Blue Shift, Hyperchromic and Hypochromic effect) – Instrumentation and Working of UV-Visible Spectrophotometer – Applications. Infrared (IR) spectroscopy –Principle – Range of	3	Chalk and Talk PPT presentation Seminar Group discussion
	Infrared (III) spectroscopy (IIIIIcpic) Range of Infrared radiation – Molecular Vibrations – Fingerprint region – Types of Stretching and Bending vibrations – For Non-linear molecule (Illustration of Water) and For linear molecule (Illustration of Carbon dioxide) – Instrumentation and Working of IR Spectrophotometer – Applications. Atomic Absorption Spectroscopy (AAS) – Principle – Instrumentation and working of Atomic Absorption Spectrophotometer – Estimation of Nickel by Atomic Absorption Spectroscopy – Application and Limitations	3	
	of AAS	2	

Course Designed by Dr.A.Sahaya Raja . Mrs.C.Kavitha and Mrs.M.Deepa

Programme	B.Sc.Chemistry Programme Code							
Course Code	ourse Code 20UCHE53 Number of Hours/Cycle							
Semester V Max. Marks								
Part	III	Credit						
	Cor	e Elective Course I C						
Course Title	Course Title Medicinal Chemistry L				Р			
Cognitive Leve	1	Up to K3	60	-	-			

Preamble

To know the different systems of medicine, Analgesics, Antipyretics drugs Chemotherapy and application of a few drugs. The definition and classification of hormones, vitamins and importance of Anesthetics.

Unit I	Systems of medicine	12Hours
	. Important terminologies used their meaning –molecular pharmacology - pharmacodynamics, pharmacophore. metabolites,antimetabolits— Introduction of drugs -definition- important drugs dosage— History of medicinal chemistry – Discovery of drugs – Types of medicine – Ayush – Ayurveda – Yoga – Unani – Siddha – Homeopathy.	
Unit II	Analgesics and Antipyretics	12 Hours
	Introduction of Analgesics –Synthesis, properties, Classification and applications – Narcotic analgesic – Morphine and derivatives. Non – Narcotic Analgesics - Pethidine and Methadone. Introduction of antipyretics – Salicyclic acid derivatives, Indol derivatives and P-amino phenol derivatives (Medicinal uses and structure only)	
Unit III	Chemotherapy and application of a few drugs	12 Hours
	Introduction of Chemotherapy – Types - Sulpha drugs – Sulphadiazine, prontosil and prontosil-S, Antimalarials – quinine and its derivatives, Arsenical drugs – salvarasan – 606 – Neosalvarsan Antibiotics: Definition, Penicillin – Tetracycline (Auromycine and Tetramycin) – Streptomycin and Chloromyceitin – drug action and uses	
Unit IV	Anaesthetics	12 Hours
	Definition and Classification of Anesthetics-Gaseous anaesthetics – Vinyl ether – Cyclopropane – Halohydrocarbons – Chloroform – Haloethane – Trichloro ethylene – Intravenous anaesthetics – Thiopentone – Local anaesthetics – Cocaine and its derivatives. Note: Therapeutic use only.	
Unit V	Pandemic and Epidemic Diseases	12 Hours
	Symptoms and causes of Cardiovascular disorders – Angiogram – Angioplasty-MRI. A symptom causes Prevention and Treatment of Diabetes- Covid-19- Chikungunya -Swine flu- Dengue fever.	

Pedagogy

Chalk and Talk method. Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and Power point Presentations.

Text Books

- 1. Text book of Phrama Chemistry by Jayashree Ghosh. S. Chand Company (Latest Edition 2008).
- 2. Pharmaceutical Chemistry Dr.S. Lakshmi Sultan Chand & Sons 2004.

Reference Books

- 1. Industrial Chemistry including Chemical Engineering B.K.Sharma Goel Publishing House. 13th Revised and Enlarged Edition.
- 2. Grodman and Gilman's "The Pharmacological basis of therapeutics".
- 3. Pharmacology, Mary J. Mycek and Richard a. Harvey 2nd Edition 2000.
- 4. Foy's Principles of Medicinal Chemistry, David A. Williams and Thomas L. Lemke Edn, V, 2002.
- 5. Hand book of experimental Pharmacology S.K. Kulkarni, 3rd Edn 1999.
- 6. Industrial Chemistry, B.K.Sharma Goel Publishing house, Edn XIII, 2008.
- 7. Pharmaceutical Manufacturing encyclopedia, Vol. I and II 2nd Edn 2000.
- 8. Unit Process in organic synthesis, Grogging 5th Edn, 2000.
- 9. Biopharmaceutics and Pharmokinetics D.M. Brahamanikav and Sunil, B.Jaiswal, Edn XIX, 2004.

E-Resources

- 1. https://remixeducation.in/introduction-to-medicinal-chemistry/
- 2. https://ccsuniversity.ac.in/bridge-library/pdf/Principle-Organic-Medicine-Chemistry.pdf
- 3. https://lastbenchpharmacist.blogspot.com/p/semester-4.html
- 4. https://www.sciencecoverage.com/2021/02/bpharmacy-2nd-year-notes-books-pdf.html
- 5. http://www.jiwaji.edu/pdf/ecourse/pharmaceutical/physicochemical%20properties%20 part%201.pdf

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand the role of drugs, medicinal chemistry and medicine in biological
	systems and medicine
CO2	Acquire the knowledge on the preparation, properties and uses of important
02	analgesic and antipytes.
CO3	Explain different types of chemotherapy, derivatives, drug action and uses.
CO4	To understand the definition, characterization and biological important of vitamins
04	and hormones.
CO5	Explain various anesthetics processes

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
C01	3	1	1	2	1	3	3	1	1	1	1	1
CO2	3	3	1	3	2	3	3	1	1	2	1	1
CO3	3	2	2	2	1	3	2	1	1	1	1	1
CO4	3	2	3	2	1	3	3	2	1	1	1	1
CO5	3	2	2	2	2	3	2	2	1	3	1	1

3. High; 2. Moderate; 1. Low

		K L aval	Sect	ion A	Section B	Section C
(Unite	COs		M	CQs	Either/ or	Open Chaise
(Omis	COS	K-Level			Choice	Choice
			No. of	K-Level	No. of	Noof
			Questions		Question	Question
1	CO1	Upto K2	2	(K1 &K2)	K2& K2	1(K2)
2	CO2	Up to K2	2	(K1 &K2)	K2& K2	1(K2)
3	CO3	Up to K3	2	(K1 &K2)	K2& K2	1(K3)
4	CO4	Up to K3	2	(K1 &K2)	K2& K2	1(K3)
5	CO5	Up to K3	2	(K1 &K2)	K2& K2	1(K3)
No of Qu	iestions [•]	to be asked	10		10	5
No of Qu	iestions	to be	10		5	3
answere	d					
Marks for each Question		1		4	10	
Total marks for each		10		20	30	
Section	Section					

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers K3 – Application oriented – Solving problems

Distribution of Sect	ion - wise Ma	orks with K Levels
Distribution of Sect		

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	5	-	-	5	5%
K2	5	40	20	65	65%
К3		-	30	30	30%
Total Marks	10	40	50	100	100%

Lesson Plan

UnitI	Systems of medicine	12 Hours	Mode
	a. Important terminologies used their meaning – molecular pharmacology.	2	РРТ
	b pharmacodynamics, pharmacophore- metabolites, antimetabolits	presentation, Chalk and	
	c. Introduction of drugs -definition-important drugs dosage	3	Talk.
	d . History of medicinal chemistry, Discovery of drugs	2	
	e. Types of medicine ,Ayush – Ayurveda – Yoga – Unani – Siddha – Homeopathy	3	
UnitII	Analgesics and Antipyretics	12 Hours	Mode
	a. Introduction Synthesis, properties, applications of Analgesics,	2	Chalk and
	b. Classification – Narcotic analgesic – Morphine and derivatives	3	Talk, Group Discussion
	c. Non – Narcotic Analgesics - Pethidine and Methadone.	2	and PPT presentation.
	d Introduction of antipyretics.,	2	
	e.Salicyclic acid derivatives, Indol derivatives	3	

UnitIII	Chemotherapy and application of a few drugs	12 Hours	Mode
	a Introduction of Chemotherapy	2	
	b. Types – drugs and its derivatives	3	Chalk and
	c Arsenical drugs	2	Talk, PPT
	d. Antibiotics	3	Presentation.
	e. drug action and uses	2	
Unit IV	Anaesthetics	12 Hours	Mode
	aDefinition and Classification of Anesthetics	2	
	b. Gaseous anaesthetics	2	Chalk and
	c.Vinyl ether– Cyclopropane –	2	Talk, PPT
	Halohydrocarbons - Chloroform - Haloethane	2	Presentation.
	d. Trichloro ethylene – Intravenous anaesthetics	3	
	e.Thiopentone – Local anaesthetics – Cocaine	3	
	and its derivatives.	5	
Unit V	Pandemic and Epidemic Diseases	12 Hours	Mode
	Symptoms and causes of Cardiovascular	2	
	disorders	2	Chalk and
	Angiogram, Angioplasty and MRI	2	Talk, PPT
	A symptom causes Prevention and Treatment of	3	Presentation,
	Diabetes	5] .
	Covid-19 and Chikungunya	2	
	Swine flu and Dengue fever	3	

Course designed by Dr.M.Pandeeswaran and Mrs.K.Rathika

Programme	B.Sc, Chemistry	Sc,Chemistry Programme Code					
Course Code	20UCHP51	CHP51 Number of Hours/Cycle					
Semester	V	Max. Marks					
Part	III	III Credit					
Course Title	Core Project L				Р		
Cognitive Lev	el Up to K4			-	-		

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Course Outcomes

Upon successful completion of this project work the students will be able to:

CO1	Enhance the analytical skills on handling instruments.
CO2	Carryout scientific experiments
CO3	Solve the environmental issues that impact the society
CO4	Develop the skills of entrepreneurship

Project work:

- Each faculty will be allotted a group of (**3-5**) students for their research project in any one of the areas of Chemistry in consultation with their guide and the Head of the Department.
- The topic/area of work will be finalized at the end of IV semester, allowing scope for the students to gather relevant literature during the vacation.
- The project report should be submitted to the Head of the Department of Chemistry through the Guide one week prior to the commencement of the summative examination.
- They shall submit **THREE** copies of their project report for valuation.
- The topic for the project can be chosen from a wide range of subjects, but a text or topic prescribed in the syllabus should be strictly avoided.

Area of work:

Corrosion, Environmental Chemistry, Nano-Synthesis, Green Chemistry, Pharmaceutical and Adsorption

Each project should contain the following details:

Brief introduction on the topic

Materials and Methods

Results and Discussions

Conclusion / Summary

Bibliography

The project should be at least 25 pages excluding bibliography and appendices. The marks will be allotted on the prescribed basis as given below:

A. Continuous Internal Assessment	
Regularity	15 Marks
Strength of the independent work (utilizing theory and	
methodology)	25Marks
Total	40 Marks
B. End Semester Examination (Viva Voce)	
Individual Presentation	30 Marks
Answering the queries	30 Marks
Total	60 Marks

Programme	B.Sc. Chemistry	Programme Code	UCH		
Course Code	20UCHS51	Number of Hours/Cycle	2		
Semester	V	Max. Marks	50		
Part	IV	Credit	2		
	S	kill Based Course I			
Course Title	Wate	er Technology	L	Т	Р
Cognitive Leve	30	-	-		

Preamble

This course deals with the source of water, parameters, alkalinity, hardness, chemical hazards, removal of hardness and purification of water.

Unit I	Water Chemistry	6 Hours
	Introduction of water - sources of water - shape and geometry of water - impurities in water - types of water - soft and hard water. Units of Hardness, Calcium carbonate equivalents - Industrial implication of hard water - water born diseases - acid rain - artificial rain - rain water harvesting.	
Unit II	Physical, Chemical and Biological Parameters	6 Hours
	Water quality parameter – physical parameters – colour - Taste – odour - Turbitity and sediment - electrical conductance - chemical parameters - Alkalinity – Acidity - pH - total dissolved solids - chemical oxygen demand – dissolved oxygen –Biological oxygen demand - biological parameters - water quality standards – WHO – ICMR.	
Unit III	Analysis of Water	6 Hours
	Estimation of Alkalinity - Acidity – pH – Hardness – Estimation of temporary, permanent and total hardness by EDTA methods - total dissolved solids – chemical oxygen demand – dissolved oxygen – estimation of Ca^{2+} and Mg^{2+} ions in water.	
Unit IV	Softening of Water	6 Hours
	Removal of hardness – softening methods - temporary hard water removal methods – permanent hard water removal methods – Lime soda method, Zeolite process- Ion-Exchange process – desalination of salt water - electrodialysis reverse osmosis methods.	
Unit V	Treatment Processes	6 Hours
	Waste water – industrial waste water treatment – domestic waste water treatment – treatment processes - primary – secondary – tertiary treatment – sedimentation – coagulation and flocculation – activated sludge – sand filters – break point chlorination – decholrination - by chloramines – by Ozone – sewage water treatment.	

Pedagogy

Class Room Lectures, Power Point Presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Books

- A.K. De, Environmental Chemistry, 5th Edition, New Age International Publisher, 2005.
- B.K. Sharma, Environmental Chemistry, 11th Edition, Krishna Prakashan Media Limited, 2007.

Reference Books

- 1. Aney E. R. 2007 water quality handbook. McGrawhill.
- 2. Vigil K. 2003 clean water An Introduction to water quality and water pollution control. Oregon state university.
- 3. Reid R. water quality and systems. Fairmont press 2004.
- 4. Merkel. B. J. and Planer- Friedrich B. 2008 Groundwater geochemistry, Springer. 6-Foster et al 2002 Groundwater quality protection. World Bank Calhoun Y. 2005, Water Pollution Chelsea House.

E-Resources

- 1. https:// www.researchgate.net
- 2. https://www.mainerwa.org
- 3. https:// www.mostreamteam.org
- 4. https://www.mdpi.com

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Recall of water, source of water and characteristics of water.
CO2	Explain the Physico- chemical parameters and biological parameters.
CO3	Demonstrate Alkalinity, total dissolved solids and chemical oxygen demand dissolved oxygen experiments.
CO4	Perform the softening and desalination methods of hard water.
CO5	Apply the knowledge on domestic waste water treatment.

Mapping of Programme specific outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	2	2	2	2	2	1	1
CO2	3	2	2	2	3	2	2	3	2	2	`1	1
CO3	3	3	3	2	3	2	2	3	2	2	1	2
CO4	3	3	3	2	3	2	2	3	2	2	2	2
CO5	3	3	3	2	3	2	2	2	2	2	2	2

1-Low ; 2-Moderate ; 3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section	Section B	
Units	COs	K-Level	Either or (Open Choice	
			No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K2	1(K2)
2	CO2	Up to K2	2	K1 & K2	1(K2)
3	CO3	Up to K2	2	K1 & K2	1(K2)
4	CO4	Up to K3	2	K1 & K2	1(K3)
5	CO5	Up to K3	2	K1 & K2	1(K3)
No. of Ques	stions to be a	sked	10		5
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total Mark	s for each Se	ction	15		15

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

	Distribution of Section-wise what is and is Levels							
K Levels	Section A (Either or	Section B Total (Open Marks		% of Marks without	Consolidated (Rounded off)			
	Choice)	Choice)		choice				
K1	15	-	15	27.2%	27%			

K2	15	15	30	54.5%	55%
K3		10	10	18.1%	18%
Total Marks	30	25	55	100%	100%%

Lesson Plan									
Unit	Water Chemistry	6 Hours	Mode						
	a .Introduction of water - sources of water - shape and geometry of water - impurities in water - types of water - soft and hard water.	2							
Unit I	b .Units of Hardness, Calcium carbonate equivalents - Industrial implication of hard water.	2	talk, Power						
	c .Water born diseases – acid rain – artificial rain – rain water harvesting.	2	presentation, Group Discussion						
	Physical, Chemical and Biological Parameters	6 Hours							
	a .Water quality parameter – physical parameters – colour - Taste – odour - Turbitity and sediment - electrical conductance –	2							
Unit II	 b. Chemical parameters - Alkalinity – Acidity - pH - total dissolved solids chemical oxygen demand – dissolved oxygen – 	2	Chalk and talk, Power point presentation						
	c .Biological oxygen demand - biological parameters - water quality standards – WHO – ICMR.	2	presentation						
	Analysis of Water	6 Hours							
	a .Estimation of Alkalinity - Acidity – pH – Hardness –	2							
Unit III	b .Estimation of temporary, permanent and total hardness by EDTA methods - total dissolved solids –	2	Chalk and talk, Power						
	c .Chemical oxygen demand – dissolved oxygen – estimation of Ca^{2+} and Mg^{2+} ions in water.	2	point presentation						
	Softening of Water	6 Hours							
∐nit	a .Removal of hardness – softening methods - temporary hard water removal methods	2	Chalk and						
IV	b .Permanent hard water removal methods – Lime soda method, Zeolite process-	2	talk, Power point						
	c .Ion-Exchange process – desalination of salt water - electrodialyses reverse osmosis methods.	2	presentation						
	Treatment Processes	6 Hours							
Unit V	 a.Waste water – industrial waste water treatment – domestic waste water treatment. b.Treatment processes - primary – secondary – tertiary treatment – sedimentation – coagulation and 	2 2	Chalk and talk, Power point presentation,						
	 nocculation – activated sludge – c. Sand filters – break point chlorination – decholrination - by chloramines – by Ozone – sewage water treatment. 	2							

Course Designed by: Dr.G.N.Kousalya

Programme	B.Sc.Chemistry	Programme Code	UCH				
Course Code	20UCHS52	Number of Hours/Cycle	2				
Semester	V Max. Marks				50		
Part	IV	Credit	2				
	Skill Based Course II						
Course Title	F	ood Chemistry	L	Т	Р		
Cognitive Level Up to K3			30	-	-		

Preamble

The course provides the basic knowledge in Food chemistry; inculcate culinary techniques and nutritional benefits of food. Aquire information about various food laws and health science.

Unit I	Food Constituents and Health	6 Hours
	Food - Classification of food - Malnutrition - Under nutrition	
	- Over nutrition - Good nutrition - The nutrition composition	
	of the body – Amount of nutrients in the body – Functions of	
	food – Metabolism – Digestion.	
	Minerals and Vitamins- minerals- Sources- functions and	
	deficiency of the following minerals.Calcium, Iron, Iodine,	
	fluorine, sodium and potassium. Vitamins-sources,	
	classification, functions and deficiencies of fat- soluble	
	vitamins-(A,D,E, and K), water- soluble vitamins-(C, thiamin,	
	niacine, riboflavin, B complex- B_6 , Folic acid and B_{12}).	
Unit II	Food Processing	6 Hours
	Introduction - Cooking methods- Effect of cooking on	
	nutrients - effect of cooling on various food stuff	
	Food preservation - Refrigeration and freezing - canning -	
	dehydration- salting- pickling- pasteurizing-fermenting-	
	carbonating-cheese making - irradiation - Preservation using	
	chemical preservatives.	
Unit III	Food additives	6 Hours
	Chemistry of sweeteners - intense sweeteners - Bulk	
	sweeteners.	
	Chemistry of food colour List of permitted colourants	
	(natural colours and synthetic colours)	
	Flavouring agents – Antioxidants-emulsifiers-flavour enhancer.	
Unit IV	Food adulteration and testing	6 Hours
	Common food adulterants – Analysis of Adulterants in edible	
	oils, Ghee, Tea, Coffee powder, Chili powder, Turmeric	
	powder, milk, pepper, honey, cereals, pulses, nuts, fruit jam,	
	Meat – Harmful effects of the Adulterants.	
Unit V	Practical rules for good sanitation of food	6 Hours
	Food laws and standards – Food Safety and Standards	
	Authority of India (fssai) - Bureau of Indian Standards (BSI) -	
	AGMARK - Consumer Protection act-International standards	
	for the safe use of food additives.	

Course Outcomes

On successful completion of the course, the students will be able to

CO1	Classify and perceive the important food constituents.
CO2	Compare and relate the various type of food processing and preservation

	techniques.
CO3	Explain the effect of food additives and their health benefits.
CO4	Demonstrate and apply food adulteration testing methods.
CO5	Explain various food laws of Indian standards.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and laboratory and testing metal.

Text Books

- 1. Ramani.V., (2009), Food Chemistry by Alex, MJP Publications.
- 2. Jaya Shree Ghose H.S., (2006), *Fundamental concepts of Applied chemistry*, S.ChandCompany(P) Ltd, New Delhi.

Reference Books

- 1. Sharma B.K., (2016), *Industrial Chemistry* (Including Chemical Engineering) Goel Publishing House, 16th Revised and Enlarged Edition.
- 2. Ramani.V., (2009), Food Chemistry by Alex, MJP Publications.
- 3. Swaminathan M.,(1993), *Advanced Text Book on Food and Nutrition*, volume I and II Printing and Publishing Co., Ltd., Bangalore.

E- Resources

- 1. <u>https://library.iitbbs.ac.in/e-resources-a2z.php?alpha=F</u>
- 2. https://www.sciencedirect.com/journal/food-chemistry/special-issue/102GX2354P2
- 3. https://www.sciencedirect.com/journal/food-chemistry/special-issue/104LRT8DJ9N
- 4. <u>https://www.foodqualityandsafety.com/article/food-regulations-what-is-the-current-scenario-in-india-</u>2/#:~:text=In%20India%20the%20Food%20Safety,is%20the%20apex%20food%20regulator.&text=The%20FSSAI%20implements%20and%20enforces,known%20as%20the%20Food%20Act.
- 5. https://globalfoodsafetyresource.com/food-adulteration/

Mapping of Programme specific outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	1	3	3	3	2	2	2	1	1	1	1	1
CO2	2	1	2	2	2	2	3	1	1	1	1	1
CO3	1	1	2	1	2	1	1	2	1	2	1	1
CO4	2	3	3	2	3	1	3	1	1	2	1	2
CO5	2	2	1	1	1	1	1	1	1	1	1	1
1-Lo	W	2-M	loderat	e		3-High	1					

Articulation	Mapping-K	Levels with	Course	Outcomes(COs)
1 ii ciculation	. mapping is		Course	Ourcomes(COB

			Section A		Section B
			Either/or	· Choice	Open Choice
Units	COs	K-Level	No. of Questions K-Level		No. of Questions
1	CO1	Up to K2	2	K1 & K2	1(K2)
2	CO2	Up to K2	2	K1 & K2	1(K2)
3	CO3	Up to K2	2	K1 & K2	1(K2)
4	CO4	Up to K3	2	K1 & K2	1(K3)
5	CO5	Up to K3	2	K1 & K2	1(K3)
No. of Questions to be asked			10		5
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total Mar	ks for each S	Section	15		15

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers K3-Application oriented-Solving problems

K Levels	Section A (Either/or)	Section B (Open	Total Marks	% of Marks without	Consolidated (Rounded off)
		Choice)		choice	
K1	15	-	15	27.2%	27%
K2	15	15	30	54.5%	55%
K3		10	10	18.1%	18%
Total Marks	30	25	55	100%	100%

Distribution of Section-wise Marks and K Levels

Lesson Plan

Unit I	Food Constituents and Health	Hours	Mode
	 a.Food – Classification of food – Malnutrition – Under nutrition – Over nutrition – Good nutrition The nutrition composition of the body – Amount of nutrients in the body – Functions of food – Metabolism – Digestion. 	2	Chalk and talk
	b. Minerals and Vitamins- minerals- Sources- functions and deficiency of the following minerals.Calcium, Iron, Iodine, fluorine, sodium and potassium. Vitamins-sources.	2	Power point presentation Seminar Group
	c. Classification, functions and deficiencies of fat- soluble vitamins-(A,D,E, and K), water- soluble vitamins-(C, thiamin, niacine, riboflavin, B complex- B_6 , Folic acid and B_{12}).	2	discussion
Unit II	Food Processing	Hours	Mode
	a. Introduction – Cooking methods– Effect of cooking on nutrients – effect of cooling on various food stuff.	2	Chalk and talk
	b. Food preservation – Refrigeration and freezing – canning – dehydration- salting- pickling-pasteurizing-fermenting.	2	Power point presentation Seminar
	c. Carbonating - cheese making – irradiation – Preservation using chemical preservatives.	2	Group discussion
Unit III	Food additives	Hours	Mode
	a. Chemistry of sweeteners - intense sweeteners - Bulk sweeteners.	2	Chalk and talk
	b. Chemistry of food colour- – List of permitted colourants (natural colours and synthetic colours)	2	Power point presentation
	c. Flavouring agents–Antioxidants emulsifiers-flavour enhancer.	2	Seminar Group discussion
Unit IV	Food adulteration and testing	Hours	Mode
	a. Common food adulterants – Analysis of Adulterants in edible oils.	2	Chalk and talk

	b.Ghee, Coffee powder, Chili powder, Turmeric powder, milk pepper, honey, cereals, pulses, nuts, fruit jam, Meat.c.Harmful effects of the Adulterants.	2	Power point presentation Seminar Group discussion
Unit V	Practical rules for good sanitation of food	Hours	Mode
	a.Food laws and standards Food Safety and Standards		Chalk and talk
	b.Authority of India (fssai) Bureau of Indian Standards (BSI) –AGMARK		Power point presentation Seminar
	c.Consumer Protection act-International standards for the safe use of food additives.		Group discussion

Course designed byDr.J.Sathiyabama, Dr. G.N.Kousalya and Miss.P.Angel

Programme	B.Sc.Chemistry Programme Code			UCH				
Course Code	20UCHC61	Number of Hours/Cycle		4				
Semester	VI	Max. Marks		100				
Part	III	Credit						
	Core Course IX							
Course Title	Physical Chemistry-III L		L	Т	Р			
Cognitive Level		Up to K3	60	-	-			

Preamble

The students are enabled to have knowledge on phase rule , group theory, photochemistry, electrochemistry and spectroscopy.

Unit I	Phase Rule	12 Hours
	Definitions of terms - Gibb's phase rule - one component	
	system - water, carbon dioxide and sulphur - polymorphism -	
	two component system - reduced phase rule - simple eutectic	
	system - Pb-Ag system - KI-water system - Fe ₂ Cl ₆ - Partially	
	miscible liquid system - CST - completely immiscible liquid	
	system-	
	Distribution law: Mathematical formulation - experimental	
	verification – condition under which the law is obeyed.	
Unit II	Group Theory	12 Hours
	Molecular symmetry elements and symmetry operations -	
	operations - products of symmetry operations - properties of a	
	group - classes and sub groups $-$ H ₂ O, NH ₃ groups	
	multiplication table $-C_{2v}$	
	Point groups - classification of molecules into point groups -	
	C_{2v} , C_{3v} , C_{2h} , D_{2h} , D_{3h} , D_{4h} , D_{6h} , T_d and O_h – example only.	
	Vector and matrix algebra - symmetry operations and	
	transformation matrices- matrices representation for rotation	
	reflection, improper rotation, identity and inversion.	
Unit III	Photochemistry	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark –	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination –	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules –	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram-	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- Photochemical processes – kinetics of photochemical reactions.	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- Photochemical processes – kinetics of photochemical reactions. Gaseous reactions : Hydrogen – halogen reactions (Formation	12 Hours
Unit III	Photochemistry Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- Photochemical processes – kinetics of photochemical reactions. Gaseous reactions : Hydrogen – halogen reactions (Formation of HCI and HBr and decomposition of HI).	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- Photochemical processes – kinetics of photochemical reactions. Gaseous reactions : Hydrogen – halogen reactions (Formation of HCI and HBr and decomposition of HI). Photochemical equilibrium – flash photolysis –	12 Hours
Unit III	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- Photochemical processes – kinetics of photochemical reactions. Gaseous reactions : Hydrogen – halogen reactions (Formation of HCI and HBr and decomposition of HI).Photochemical equilibrium – flash photolysis – 	12 Hours
Unit III Unit IV	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – 	12 Hours
Unit III Unit IV	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – 	12 Hours 12 Hours
Unit III Unit IV	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – 	12 Hours 12 Hours
Unit III Unit IV	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- 	12 Hours 12 Hours
Unit III Unit IV	PhotochemistryDefinition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes – Jablonski diagram- 	12 Hours

	electrode potentials - standard electrode potential - Nernst				
	equation. Cell emf measurement of single electrode potential –				
	types of electrodes - reference electrodes - electrochemical				
	series - experimental determination of cell emf - Westom				
	cadmium cell.				
	Applications of emf measurements- Determination of pH using				
	glass electrode Potentiometric titrations.Commercial cells -				
	primary and secondary cells – dry cell – lead storage cell – fuel				
	$cell - H_2 \cdot O_2$ cell.				
Unit V	Spectroscopy	12 Hours			
	Introduction – electromagnetic radiation – different regions –				
	absorption spectroscopy – molecular spectra – types of				
	molecular spectra.				
	Rotational spectra of diatomic molecules - rigid rotator -				
	selection rule - determination of moment of inertia and bond				
	length – intensities of spectral lines.				
	Vibrational spectra -Modes of vibration in polyatomic				
	molecules – vibrational spectra of H ₂ O and CO ₂ .				
	Raman spectra - Raman effect - stokes and anti stokes lines -				
	quantum theory of Raman effect - experimental study -				
	comparison between IR and Raman spectra - applications of				
	Raman spectra.				
	Electronic spectra – Franck – Condon principle.				
	Nuclear magnetic resonance spectroscopy – principle,				
	instrumentation - interpretation of nmr spectra - spectra of				
	ethanol.				
	Electron spin resonance spectroscopy – principle – difference				
	between nmr and esr - hyperfine structure in esr spectrum -				
	selection rule, hydrogenatom, Methyl radical esr spectrum.				

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

- 3. Puri, Sharma and Pathania,(2015), Principles of Physical Chemistry, Vishal Publishing Co.47th Edition, (2015)
- 4. Bahl.B.S, ArunBahl(2005), Essentials of Physical chemistry, S.Chand and company Ltd.

Reference Books

- 5. A.W.Adamson.,(1982)Physical Chemistry of surfaces, Wiley publications,
- 6. Peter-W.Atkins, (2010), Physical Chemistry, Oxford University Press, 9th edition
- 7. Glasstone S.,(1948)'A Textbook of Physical Chemistry".

E-Resources

- $1. \ https://serc.carleton.edu/research_education/equilibria/phaserule.html$
- 2. http://soft-matter.seas.harvard.edu/index.php/Phase_Rule
- 3. https://pubs.rsc.org/en/content/articlelanding/2016/ob/c6ob00842a
- 4. https://www.mdpi.com/journal/molecules/sections/photochemistry
- 5. https://crypto.stanford.edu/pbc/notes/group/group.html
- 6. http://www.advgrouptheory.com/GTNews.html
- 7. https://pubs.acs.org/doi/10.1021/cr500023c

- 8. https://chem.pg.edu.pl/documents/175289/4235721/Electrochemistrysupplement%20text.pdf
- 9. https://astronomy.swin.edu.au/cosmos/s/Spectroscopy
- 10. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/spectro.htm

Course Outcomes

After completion of this course, the students will be able to:

CO1	Gain knowledge in phase rule and its applications.
CO2	Attain the awareness about the group theory and point groups.
CO3	Explain photochemical, photophysical processes and its mechanisms
CO4	Acquire the basic concept, theories and applications of electrochemistry
CO5	Attain awareness on usage of spectral techniques on UV, IR, NMR and ESR.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	3	3	3	3	3	3	1	1	1	1
CO2	3	3	3	3	3	2	3	1	1	1	1	1
CO3	3	2	2	3	2	2	3	1	1	1	1	1
CO4	3	2	3	3	2	3	3	3	1	1	1	1
CO5	3	2	2	3	2	2	2	2	1	1	1	1
1-Lo	W	2- M	loderat	e		3-High	1					

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sectio	on A	Section B	Section C	
			MC	Qs	Either/ or	Open	
Units	COs	K-Level			Choice	Choice	
			No. of	K-Level	No. of	No. of	
			Questions		Questions	Questions	
1	CO1	Up to K3	2	K1&K2	2(K2&K2)	1(K3)	
2	CO2	Up to K3	2	K1&K2	2(K2 & K2)	1(K3)	
3	CO3	Up to K3	2	K1&K2	2(K2 & K2)	1(K3)	
4	CO4	Up to K3	2	K1&K2	2(K2 & K2)	1(K3)	
5	CO5	Up to K3	2	K1&K2	2(K2 & K2)	1(K3)	
No of Q	Juestions	to be asked	10		10	5	
No of Q	Questions	to be	10		5	3	
answered							
Marks for each Question		1		4	10		
Total marks for each		10		20	30		
Section							

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution	of Section -	wice Morke	with K	I ovole
Distribution	of Section -	WISC WIAL NS		LEVEIS

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

	Lesson Plan		1		
Unit I	Phase Rule	12 Hours	Mode		
	a. Definitions of terms – Gibb's phase rule – one component system – water, carbon dioxide and sulphur.	3			
	b. polymorphism – two component system – reduced phase rule – simple eutectic system – Ph-Ag system	2	Chalk and		
	c.KI -water system-Partially miscible liquid system	2	Talk, PPT Presentation		
	d.CST completely immiscible liquid system	2			
	e. Distribution law: Mathematical formulation – experimental verification – condition under which the law is obeyed.	3			
Unit II	Group Theory	12 Hours	Mode		
	a. Molecular symmetry elements and symmetry operations	2			
	b. operations – products of symmetry operations – properties of a group	2	Group		
	c. classes and sub groups – groups multiplication table – C_{2v} .	2	Discussion, Chalk and		
	$\label{eq:constraint} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	Talk, PPT Presentation.		
	e.Vector and matrix algebra – symmetry	3			
TT \$4 TTT	operations and transformation matrices.	10 11	Mada		
Unit III	Photochemistry	12 Hours	Mode		
	comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer law – Grothus – Draper law – Stark – Einstein law.	3			
	b. quantum efficiency and its determination – consequence of light absorption by atoms and molecules – photophysical processes.	2			
	c. fluorescence, phosphorescence and other deactivating processes – Jablonski diagram	2	Chalk and Talk, Group		
	d. Photochemical processes – kinetics of photochemical reactions. Gaseous reactions : Hydrogen – halogen reactions (Formation of HCI and HBr and decomposition of HI)	3	Discussion.		
	e. Photochemical equilibrium – flash photolysis – photosensitization, chemiluminescence – bioluminescence.	2			
Unit IV	Electrochemistry	12 Hours	Mode		
	a.E lectrolytic conduction- Kohlrausch's law- Applications of Kohlrausch's law-Applications of conductance measurements- conductometric titrations.	2	Chalk and Talk, PPT		
	b. Concepts of electrochemical cell – cell diagram and terminology – conventions regardingh signs of cell e.m.f. – calculation of cell e.m.f. from single electrode potential – standard emf of the cel	3	Presentation, Video Lectures.		
	c. Nernst equation. Single electrode potentials and	2			

	cell emf measurement of single electrode potential – types of electrodes – reference electrodes – standard electrode potential d. electrochemical series – experimental determination of cell emf – Westom cadmium cell. Applications of emf measurements Determination of pH using glass electrode . Potentiometric titrations	3	
	e. Commercial cells – primary and secondary cells – dry cell – lead storage cell – fuel cell – H_2O_2 cell.	2	
Unit V	Spectroscopy	12 Hours	Mode
	different regions – absorption spectroscopy – molecular spectra – types of molecular spectra. Rotational spectra of diatomic molecules – rigid rotator – selection rule – determination of moment of inertia and bond length – intensities of spectral lines.	2	
	b. Vibrational spectra –Modes of vibration in polyatomic molecules – vibrational spectra of H_2O and CO_2 .	2	
	c.Raman spectra – Raman effect – stokes and anti stokes lines – quantum theory of Raman effect – experimental study – comparison between IR and Raman spectra – applications of Raman spectra. Electronic spectra – Franck – Condon principle.	3	Lecture Method, PPT Presentation.
	d. Nuclear magnetic resonance spectroscopy – principle, instrumentation – interpretation of nmr spectra – spectra of ethanol.	3	
	e. Electron spin resonance spectroscopy – principle – difference between nmr and esr – hyperfine structure in esr spectrum – selection rule, hydrogen atom esr spectrum.	2	

Course designed by Dr.J.Sathiyabama, Dr. G.N.Kousalya and Ms.P.Angel

Programme	B.Sc. Chemistry	Programme code	UCH	I				
Course Code	20UCHC62	Number of Hours/cycle	4					
Semester	VI	Max. Marks	100					
Part	III	Credit	4					
	Core Course X							
Course Title	Applied Chemistry III		L	Т	Р			
Cognitive level upto K3				-	-			

Preamble:

The objective of the course is to know the importance of Agricultural chemistry like role of fertilizers, manufacture of pesticides, insecticides and fungicides, know the various protective coating processes and also get more knowledge about match industry, pyrotechnics, explosives, paint, silicate, processing and tanning of leather.

Unit I	Chemistry in Agriculture	12 Hours	
	Fertilizers : Definition – Nutrients for plants – role of various	12 110415	
	elements in plants growth – natural and chemical fertilizers –		
	classification of chemical fertilizers – Urea Super phosphate		
	Potassium nitrate – mixed fertilizer – Fertilizer industry in India.		
	Pesticides : Definition – classification – inorganic pesticides: Lead		
	arsenate. Paris green. Hydrocyanic acid.		
	Insecticides : Stomach poisons, contact insecticides, fumigants,		
	manufacture and uses of insecticides. DDT. BHC (gammexane:		
	conformation of gamma isomer).		
	Fungicides : Bordeaux mixture, mention of lime sulphur, creosote		
	oil and formula		
Unit II	Protective Coating	12 Hours	
	Introduction, coating process, Hot dipping, Metal cladding –		
	Electrodeposition – Application of electroplating – factors		
	influencing the nature of deposition – Requirements of electrolyte		
	– Electrical energy required for electro deposition – Electroplating		
	of same metals – Displacement or immersion plating –		
	Impregnated coating or cementation metal spraying of metalized		
	coatings – Vapour deposition – chemical conversation coatings –		
	organic coatings.		
Unit III	Match industry and Explosives	12 Hours	
	Match Industry: Raw materials - Types of matches -		
	Composition of match head striking surface manufacture of safety		
	matches - Pyrotechnics - Colored matches.		
	Explosives: Classification of explosives, Requirements and		
	classification of a good explosives TNT, RDX, Picric acid,		
	Ammonium picrate, Nitroglycerine, Dynamite, Lead azide, Dinol,		
	Gun powder, Ammonium nitrate, PETN and PENTHRIT.		
Unit IV			
	Paint and Silicate Industry	12 Hours	
	Paint and Shicate industry Paints: Paints and pigments - formulation, composition and	12 Hours	
	Paint and Shicate industry Paints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments -	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.Silicate industry: Cement – Classification of cement, ingredients	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.Silicate industry: Cement – Classification of cement, ingredients and their role – Manufacture of cement and the setting process,	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.Silicate industry: Cement – Classification of cement, ingredients and their role – Manufacture of cement and the setting process, quick setting cements	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.Silicate industry: Cement – Classification of cement, ingredients and their role – Manufacture of cement and the setting process, quick setting cementsGlass: Glassy state and its properties, classification (silicate and	12 Hours	
	Paint and Silicate industryPaints: Paints and pigments - formulation, composition and related properties. Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.Silicate industry: Cement – Classification of cement, ingredients and their role – Manufacture of cement and the setting process, quick setting cementsGlass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass.	12 Hours	

	Soda lime glass, lead glass, armoured glass, Safety glass,	
	borosilicate glass, fluorosilicate, coloured glass.	
Unit V	Tanning of Leather	12 Hours
	Processing of Leather: Structure and composition of animal skin-	
	terminology involved in leather tanneries chemistry of beam	
	house processes-soaking, liming, unhairing, deliming, bating and	
	pickling preservation of animal skin-salt curing and brine curing.	
	Materials and Methods of Tanning: Vegetable tans- catechol	
	tans- pyrogallol tans-vegetable tanning process and applications of	
	vegetable tanned leather-Chrome tanning-chemicals used-method-	
	type of leather obtained and its uses- aldehyde tanning- Artificial	
	leather- Corfam - synthetic tans.	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations.

Text Books

- 1. B. K Sharma, (2016), Industrial Chemistry, GOEL publishing.
- 2. Jayashree Ghosh, (2006), Fundamental concepts of Applied Chemistry, S. Chand & Company.
- 3. Acharya, B. Samantaray, (2016), Textbook on Applied Chemistry, Pearson; 1st edition

Reference Books

- 1. K. Bagavathi Sundari, (2019), Applied Chemistry, MJP Publisher.
- 2. D.N.Dhar, (2020), Applied Chemistry I, Veiindia.

E-Resources

https://www.vedantu.com/chemistry/agricultural-chemistry

https://byjus.com/jee/corrosion/

https://en.wikipedia.org/wiki/Pyrotechnics

https://www.slideshare.net/hzharraz/silica-sand-and-glass-industry

http://www.chem.uwimona.edu.jm/courses/CHEM2402/Textiles/Leather.html

Course outcomes

On completion of the course, students will be able to

No.	Course outcome			
CO1	Learn about the importance of fertilizer, pesticides, insecticides and fungicides.			
CO2	Understand the various process of productive coating.			
CO3	Gain knowledge about the match industry, pyrotechnics and explosives.			
CO4	Understand about silicate industry and industrial coating.			
CO5	5 Learn about the processing of leather and understand the materials and methods of			
	tanning.			

PO1 PO2 PO3 PO4 | PO5 | PO6 | PO7 | PO8 | PO9 **PO10** PO11 PO12 CO1 CO2 CO3 CO4 CO5

Mapping of Programme outcomes with Course Outcomes

			Section A		Section B	Section C
			MC	Qs	Either/or Choice	Open choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
2	CO2	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
3	CO3	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
No. of Questions to be asked		10		10	5	
No. of Questions to be answered		10		5	3	
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

Articulation Mapping-K Levels with Course Outcomes (COs)

K1-Remembering and recalling facts with specific answers K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (open choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Distribution of Section-wise Marks and K Levels

Lesson Plan

Unit I		Chemistry in Agriculture	Hours	Mode
	a)	Fertilizers : Definition – Nutrients for plants – role of various elements in plants growth – natural and chemical fertilizers	3	
	b)	Classification of chemical fertilizers – Urea, Super phosphate and Potassium nitrate – mixed fertilizer – fertilizer industry in india.	1	Chalk and
	c)	Pesticides : Definition – classification – inorganic pesticides: Lead arsenate, Paris green, Hydrocyanic acid.	3	talk, Power point presentation
	d)	Insecticides : Stomach poisons, contact insecticides, fumigants, manufacture and uses of insecticides. DDT, BHC (gammexane: conformation of gamma isomer).	3	r
	e)	Fungicides : Bordeaux mixture, mention of lime sulphur, creosote oil and formula.	2	
Unit II		Protective Coating	Hours	Mode
	a)	Introduction, coating process, Hot dipping, Metal cladding.	2	Chalk and
	b)	Electrodeposition - Application of electroplating	2	talk, Power
	c)	Factors influencing the nature of deposition – Requirements of electrolyte – Electrical energy	2	point presentation
		required for electro deposition.		

	d)	Electroplating of same metals - Displacement or	2	
		immersion plating.	Z	
	e)	Impregnated coating or cementation metal	0	
		spraying of metalized coatings.	Z	
	f)	Vapour deposition – chemical conversation	2	
TT •4 TTT		Coatings – organic coatings.	Hours	Mode
Unit III		Match industry and Explosives	Hours	Mode
	a)	Match Industry: Raw materials - Types of matches	2	
	b)	Composition of match head striking surface manufacture of safety matches - Pyrotechnics - Colored matches.	2	Chalk and talk, Power point
	c)	Explosives : Classification of explosives, Requirements and classification of a good explosives TNT	2	presentation
	d)	RDX, Picric acid, Ammonium picrate	2	
	e)	Nitroglycerine, Dynamite, Lead azide, Dinol	2	
	f)	Gun powder, Ammonium nitrate, PETN and PENTHRIT.	2	
Unit IV		Paint and Silicate industry	Hours	Mode
	a)	Paints: Paints and pigments - formulation,	2	
	,	composition and related properties.		
	b)	Oil paint – Vehicle - Modified oils – Pigments - Toners - Lakes pigments – Filler – Thinner – Enamels.	2	
	c)	Silicate industry : Cement – Classification of cement, ingredients and their role – Manufacture of cement and the setting process, quick setting cements	2	Chalk and talk, Power point
	d)	Glass : Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass.	2	presentation
	e)	Composition and properties of the following types of glasses: Soda lime glass, lead glass	2	
	f)	Armoured glass, Safety glass, borosilicate glass, fluorosilicate, coloured glass.	2	
Unit V		Tanning of Leather	Hours	Mode
	a)	Processing of Leather : Structure and composition of animal skin-terminology involved in leather tanneries chemistry of beam house processes	3	
	b)	Soaking, liming, unhairing, deliming, bating and pickling preservation of animal skin-salt curing and brine curing.	3	Chalk and talk, Power point
	c)	Materials and Methods of Tanning: Vegetable tans- catechol tans- pyrogallol tans-vegetable tanning process and applications of vegetable	3	presentation, Group Discussion
		tanned leather.		

Programme	B.Sc.Chemistry	Programme Code		UCH	I
Course Code	Course Code 20UCHE61 Number of Hours/Cycle			4	
Semester	VI	Max. Marks		100	
Part	III	Credit		4	
Core Elective Course II A					
Course Title	In	dustrial Chemistry	L	Т	Р
Cognitive Level	Up to K3		60	-	-

Preamble

The course enables the students to gain knowledge on concepts of various Industrial techniques and its applications & significant impacts on industries

Unit I	Extractive and Powder Metallurgy	12Hours
	a) Extractive Metallurgy: Introduction – Flux and Slags– Types	
	of Slags and Fluxes- Uses of Slag and fluxes- Extraction of	
	Metal from its Ore - Crushing - Concentration of the ore -	
	Gravity Separation, Electromagnetic Separation, Froth Flotation	
	Process and Chemical methods – Extraction of the Metals from	
	the Concentration ores -Pyrometallurgy, Hydrometallurgy and	
	Electrometallurgy –Methods involved in extraction process –	
	Calcination, Cupellation, Smelting, Fire refining, Distillation	
	metallurgy, Halide metallurgy, Vacuum metallurgy and	
	Aluminothermic reduction	
	Powder Metallurgy (P/M): Introduction – Definition – Principles	
	of Powder Metallurgy -Characteristics of metal powders -	
	Advantages and Disadvantages of powder metallurgy - Methods	
	of producing metal powders – Mechanical Pulverization,	
	Atomization, Electrolytic deposition and Chemical methods -	
	Methods of powder metallurgy–Various steps involved in powder	
	metallurgy process – Applications of powder metallurgy.	
Unit II	Materials In Industry	12 Hours
	a) Refractories:	
	Refractories – Classification – acidic, basic and neutral	
	refractories - properties - refractoriness, refractoriness under load	
	(RUL), dimensional stability, porosity and thermal spalling -	
	Manufacture of refractories- Alumina, Magnesite and Zirconia	
	bricks.	
	b) Abrasives:	
	Abrasives - natural and synthetic abrasives-Quartz, Corundum,	
	emery, garnet, diamond, silicon, carbide and boron carbide -	
	Application of abrasives.	
	c) Lubricants:	
	Lubricants – mechanism of lubrication, Liquid lubricants,	
	properties – viscosity index, tlash and fire point, cloud and pour	
	point, oiliness– Solid lubricants – graphite and molybdenum	
	sulphide	
Unit III	Drugs, Soaps And Detergents	12 Hours

	a) Drugs: Drugs – Classification – Drug action – Importance of Drugs – Drugs used in Diagnosis of diseases, preventing diseases and curing diseases – Side effects of Drugs – Terminology in Medicinal chemistry – Naming of Drugs – manufacture of Drugs – Acetanilide, Paracetamol, Aspirin and Chloramphenicol	
	b) Soaps: Soaps – Definition – manufacture of soap – Kettle Process and Hydrolyser Process – Types of Soaps – Cleansing action of Soap.	
	c) Detergents: Detergents – Definition – classification of Detergents – Anionic detergents, Cationic detergents, Non – Ionic detergents and Amphoteric detergents – Soft vs Hard Detergents – Advantages and limitation of Detergents over Soaps – Impact of detergents on environment – Distinguish between Soaps and Detergent.	
Unit IV	Petrochemical Industry	12 Hours
	 a) Petrochemicals Process and Analysis: Introduction – Classification of fuels – coal – analysis of coal – Proximate analysis and Ultimate analysis – carbonization – manufacture of metallurgical coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking - Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil– Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas b) Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific value- ignition temperature – spontaneous ignition temperature– explosive range – flue gas analysis – ORSAT method – Carbon emission – carbon foot print. 	
Unit V	Energy Sources And Storage Device	12 Hours
		nours
	a) Energy sources Nuclear fission – Characteristics of Nuclear fission – nuclear fusion – differences between nuclear fission and fusion – nuclear chain reactions – nuclear energy – Nuclear reactor – Light water nuclear power plant – Breeder reactor. Solar energy conversion – Thermal Conversion Photoconversion – Solar cell (Photogalvanic cell) – Application of Solar cells – Advantages and disadvantages of solar cells – Recent development in solar cell materials. Wind energy – Methods of harnessing wind energy – Advantages and disadvantages of wind energy – Geo - Thermal energy.	

16		
	b) Storage Device:	
	Batteries - Types of battery – primary battery – dry cell –	
	secondary battery – lead-acid battery, NICAD battery and lithium	
	battery – Solid State lithium battery – lithium-Sulphur battery and	
	lithium - ion battery (LIB) - Fuel cells – Hydrogen- oxygenfuel	
	cell – Microbial fuel cells (MFCs) – Super capacitor – Electric	
	Vehicles (EV) – Working principle – Components of EV – plug-	
	in electric vehicles – Types of plug- in electric vehicles – Battery	
	Electric vehicles (BEV) and Hybrid type vehicles – Hybrid	
	electric vehicle (HEV). Plug - in Hybrid Electric Vehicle (PHEV)	
	and Fuel cell Electric vehicles – Advantages and disadvantages of	
	electric vehicles	
	ciccure venicies.	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and PowerPoint Presentations

Text Books:

- 1. Sharma.B.K.,(2016), *Industrial Chemistry* (Including Chemical Engineering), Goel Publishing House, Meerut
- 2. Krishnamurthy.N., Vallinayagam. P., Jeyasubramanian, K., (2008) *Applied Chemistry*, Tata McGraw Hill publishing Company Ltd. New Delhi

Reference Books

- 1. Dr.Prakash G. More, (2012) *Comprehensive Industrial Chemistry*, Pragati Prakashan Edition, New Delhi
- 2. Jain and Jain,(2018), *Engineering chemistry*, Dhanpat Rai Publications Pvt. Ltd., New Delhi.
- 3. Bagavathi Sundari, K,(2007), Applied Chemistry, S.Chand, New Delhi
- 4. Jaya Shree Ghosh.,(2008), *Fundamental concepts of applied chemistry*, S.Chand, New Delhi

E-Resources

- 1. https://www3.nd.edu/~amoukasi/CBE30361/Lecture_Alloys_2014.pdf
- 2. http://www.vpscience.org/materials/unit4metallurgy.pdf
- 3. https://www.iare.ac.in/sites/default/files/lecture_notes/EC-Lecture%20Notes 7.pdf
- 4. https://nios.ac.in/media/documents/313courseE/L35A.pdf
- 5. http://www.chymist.com/Soap%20and%20detergent.pdf
- 6. https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004132159500424ra nvijay_engg_Fuels.pdf
- 7. https://stannescet.ac.in/cms/staff/qbank/CSE/Notes/CY8151-Engineering%20Chemistry-1911864891-unit_5.pdf

Course outcome

On the successful completion of the course, students will be able to

CO1	Recognize the chemical composition of alloys and brings about the methods of				
	metallurgy and powder metallurgy process.				
CO2	Explain the characteristics, Properties and uses of Refractories, Abrasives and				
	Lubricants				
CO3	Brings about important terminologies of different drugs and Compare the Soaps and				
	detergents and their cleansing action				
CO4	Identify and outline the characteristics, Properties and uses of Petrochemicals				
CO5	Compare nuclear and Chemical reactions and list out the types of batteries and their				
	advantages and disadvantages				

On the successful completion of the course, the students will be able to gain knowledge on concepts of Chemistry and its impacts on Industries

	- 0	C	,									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	1	2	2	1	3	2	1	-	1	-	-
CO2	2	2	1	2	1	3	2	1	-	1	-	-
CO3	3	2	1	2	1	3	3	1	-	1	-	1
CO4	3	1	1	2	1	3	3	1	-	1	-	1
CO5	3	2	3	2	1	3	2	2	-	1	-	1
1- Low		2 - Moderate		•	3 - High			•	-	•	•	

Mapping of Programme outcomes with Course Outcomes

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C	
			MCQs		Either/or Choice	Open Choice	
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions	
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)	
2	CO2	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)	
3	CO3	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)	
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)	
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)	
No. of	Questions	to be asked	10		10	5	
No. of	Questions	to be	10		5	3	
answe	red						
Marks	for each Q	uestion	1		4	10	
Total I	Marks for e	each Section	10		20	30	

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers K_{2}^{2} Application Oriented Solving much large

K3-Application Oriented-Solving problems

K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated	
	(No	(Either/or)	Open choice	Marks	without	(Rounded off)	
	Choice)				choice		
K1	5	-		5	5%	5%	
K2	5	40	20	65	65%	65%	
K3	-		30	30	30%	30%	
Total Marks	10	40	50	100	100%	100%	
	Lesson Plan						
------	--	----------	--				
Unit	Extractive And Powder Metallurgy	12 Hours	Mode				
	a) Extractive Metallurgy: Introduction – Flux and Slags– Types of Slags and Fluxes– Uses of Slag and fluxes– Extraction of Metal from its Ore – Crushing	2	Chalk and Talk PPT presentation Seminar Group				
Ι	Concentration of the ore – Gravity Separation, Electromagnetic Separation, Froth Elotation Process and Chemical methods	2	discussion				
	Extraction of the Metals from the Concentration ores – Pyrometallurgy, Hydrometallurgy and Electrometallurgy	2					
	Methods involved in extraction process – Calcination, Cupellation, Smelting, Fire refining, Distillation metallurgy, Halide metallurgy, Vacuum metallurgy and Aluminothermic reduction.	2					
	b) Powder Metallurgy (P/M): Introduction – Definition – Principles of Powder Metallurgy – Characteristics of metal powders – Advantages and Disadvantages of powder metallurgy	1					
	Methods of producing metal powders – Mechanical Pulverization, Atomization, Electrolytic deposition and Chemical methods – Methods of powder metallurgy–Various steps involved in powder metallurgy process – Applications of powder metallurgy.	3					
	Materials In Industry	12 Hours	Mode				
Π	 a) Refractories: Refractories – Classification acidic, basic and neutral refractories – properties – refractoriness, refractoriness under load (RUL), dimensional stability, porosity and thermal spalling –Manufacture of refractories– Alumina, Magnesite and Zirconia bricks. b) Abrasives: Abrasives – natural and 	4	Chalk and Talk PPT presentation Seminar Group discussion				
	synthetic abrasives–Quartz, Corundum, emery, garnet, diamond, silicon, carbide and boron carbide – Application of abrasives.	4					
	c) Lubricants: Lubricants – mechanism of lubrication, Liquid lubricants, properties – viscosity index, flash and fire point, cloud and pour point, oiliness– Solid lubricants – graphite and molybdenum sulphide	4					
	Drugs, Soaps And Detergents	12 Hours	Mode				

111	a) Drugs: Drugs – Classification – Drug action		Chalk and
	- Importance of Drugs - Drugs used in	4	talk
	Diagnosis of diseases, preventing diseases and		Power point
	curing diseases – Side effects of Drugs –		presentation
	Terminology in Medicinal chemistry – Naming		Seminar
	of Drugs – manufacture of Drugs –		Group
	Acetanilide Paracetamol Aspirin and		discussion
	Chloramphenicol		
	b) Soong Soong Definition manufacture of	4	
	b) Soaps: Soaps – Demittion – manufacture of		
	soap – Kettle Process and Hydrolyser Process		
	– Types of Soaps – Cleansing action of Soap.		
	c) Detergents: Detergents – Definition –	4	
	classification of Detergents – Anionic		
	detergents, Cationic detergents, Non - Ionic		
	detergents and Amphoteric detergents - Soft vs		
	Hard Detergents – Advantages and limitation		
	of Detergents over Soaps - Impact of		
	detergents on environment – Distinguish		
	between Soaps and Detergent		
	between boups and Detergent.		
	Petrochemical Industry	12 Hours	Mode
IV	a) Petrochemicals Process and Analysis:	2	Chalk and
	Introduction – Classification of fuels – coal –		talk
	analysis of coal – Proximate analysis and		Power point
	Ultimate analysis		presentation
	carbonization – manufacture of metallurgical		Seminar
			-
	coke - Otto Hoffmann method - Petroleum -		Group
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of		Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer – Tropsch process Knocking – Octane number –	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Casoline oil Leaded petrol – Cetane number	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Discel oil – Discel index – comparison of	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of	2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil	2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel –	2 2 2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number – Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) –	2 2 2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) –	2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas	2 2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition	2 2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – Manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number – Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific	2 2 2 2	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific	2 2 2 4	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number – Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific value- ignition temperature – spontaneous	2 2 2 4	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number – Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific value- ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis – OPSAT method	2 2 2 4	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific values – theoretical calculation of calorific value- ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis – ORSAT method – Carbon emission – Carbon foot print	2 2 2 4	Group discussion
	coke – Otto Hoffmann method – Petroleum – Refining of Petroleum Cracking – Types of Cracking – Thermal cracking (Liquid phase and Vapour phase thermal cracking) and Catalytic cracking (Fixed bed and Moving bed Catalytic cracking) – Advantages of Catalytic cracking over thermal cracking Synthetic Petrol – manufacture of synthetic petrol –Bergius process and Fischer –Tropsch process. Knocking – Octane number – Gasoline oil– Leaded petrol – Cetane number– Diesel oil – Diesel index – comparison of gasoline oil and diesel oil Manufacture of Power alcohol and Biodiesel – Natural gas – compressed natural gas (CNG) – liquefied petroleum gases (LPG) – Manufacture of Producer Gas and Water Gas Combustion of fuels: Combustion - Definition – calorific value – higher and lower calorific values – theoretical calculation of calorific value- ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis – ORSAT method – Carbon emission – Carbon foot print	2 2 2 4	Group discussion

	Energy Sources And Storage Devic	12 Hours	Mode
V	a) Energy sources: Nuclear fission – Characteristics of Nuclear fission – nuclear fusion – differences between nuclear fission and fusion – nuclear chain reactions – nuclear energy – Nuclear reactor – Light water nuclear power plant – Breeder reactor.	2	Chalk and talk Power point presentation Seminar Group discussion
	Solar energy conversion – Thermal Conversion Photoconversion – Solar cell (Photogalvanic cell) – Application of Solar cells – Advantages and disadvantages of solar cells – Recent development in solar cell materials	2	
	Wind energy – Methods of harnessing wind energy – Advantages and disadvantages of wind energy – Geo - Thermal energy.	2	
	b) Storage Device: Batteries - Types of battery – primary battery – dry cell – secondary battery – lead-acid battery, NICAD battery and lithium battery – Solid State lithium battery – lithium-Sulphur battery and lithium - ion battery (LIB) - Fuel cells –	3	
	 Hydrogen- oxygen fuel cell – Microbial fuel cells (MFCs) – Super capacitor Electric Vehicles (EV) – Working principle – Components of EV – plug- in electric vehicles Types of plug- in electric vehicles – Battery Electric vehicles (BEV) and Hybrid type vehicles – Hybrid electric vehicle (HEV), Plug in Hybrid Electric Vehicle (PHEV) and Fuel cell Electric vehicles – Advantages and disadvantages of electric vehicles. 	3	

Course Designed byDr.A.Sahaya Raja

Programme	B.Sc.Chemistry	Programme Code	UCH		
Course Code	20UCHE62	Number of Hours/Cycle	4		
Semester	VI	Max. Marks	100		
Part	III	Credit	4		
	С	ore Elective Course II B			
Course Title		Bio-Chemistry	L	Т	Р
Cognitive Level Up to K3			60	-	-

To enable the student to develop a sound knowledge of fundamental concepts in bio chemistry and the various aspects of metabolism and interrelationship of metabolic events..

Unit I	Carbohydrates	12Hours
	Introduction, Properties, Functions – Classification – Reducing	
	and Non Reducing Sugar -Glucose Structure-Conformation-	
	Stability -Hetero Saccharide (hyaletronic acid and	
	heparin)Structure only	
	Metabolism-Glycolysis and its reversal,TCA Cycle ,Relation	
	between Glycolysis and respiration.Principles of Bio	
	energetics, Electron transport chain and oxidative	
	phosphorylation	
Unit II	Lipids	12 Hours
	Introduction Properties, Biological importants - Classification	
	- Simple Lipids - Compounds Lipids - Derived Lipids -	
	Phospho Lipids – Glyco Lipids.	
	Fatty acids-Saturated, Unsaturated Fatty acids, Properties-	
	Hydrolysis-Acid number, saponification number	
	Cholesterol-Bio synthesis, Bile salts derived from Cholesterol	
Unit III	Amino Acids	12 Hours
	Introduction -Definition of Amino acids-Synthesis of amino	
	acids- Essential - Non essential of Amino acids - Function,	
	Structure, Classification and Properties of Amino	
	acids(Solubility, Melting point, Iso - Electric point, Ampholytes	
	or Amphoteric nature, Zwitterions, Formation of esters,	
	Ninhydrin reaction (oxidative deamination), Reduction,	
	Darkin – west reaction).	
Unit IV	Enzymes	12 Hours
	Nomenclature ,Introduction - Classification Properties -	
	specificity, factors influencing enzyme action. Mechanism of	
	enzyme action -lock and key model and induced fit	
	model.Coenzymes-Co factors-Prosthetic groups of	
	enzyme(TPP,NAD,NADP,FAD,ATP) their importance in	
	enzymes actions . Mechanism of Enzyme inhibition	
	,Competitive, un competitive and allosteric-Structure of	
	Peptides and Proteins	
Unit V	Nucleic Acids	12 Hours

Nucleosides	and Nucleotides-Puri	ne and pyrin	midine
bases,Nucleic	acids -Difference betwee	en DNA and R	NA –
Clasification of	f RNA		
-Replication-Bi	io synthesis of mRNA	-Transcription.	Benetic
code –Mutatio	ons and Mutants.DNA	sequencing and	PCR
,Recombinant I	DNA Technology,DNA	olymorphism.	

Pedagogy

Chalk and Talk method. Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and Power point Presentations.

Text Books

- 1. Clinical Bio-Chemistry by Varley. Sulthan Chand, 2005.
- 2. Fundamental of Bio-Chemistry, Voet and Voet- provide necessary details on lastest edition.

Edited by Prof.Hiren K Das(JNU).

Reference Books

- Lehninger: Priniciples of Bio- Chemistry(2013) 6th ed ; Nelson, D.L. and Cox,M.M., W.H. Freeman and Company(New York), ISBN:13:978-1-4641-0962-1/ ISBN: 10:1-4292-3414-8.
- 2. Textbook of Bio-Chemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John.
- 3. Enzymes, Malcolm Dixon, Edwin Clifford Webb-provide necessary details.

E-Resources

- 1. http://site.iugaza.edu.ps/fsharif/files/2010/02/Kaplan-molecular-genetics-lecturenotes-2004.pdf
- 2. https://www.qmul.ac.uk/library/media/library/using-the-library/media-folderimages-library/Principles-Of-Biochemistry-Introductory-Series.pdf
- 3. https://www.helpforag.app/2018/02/plant-biochemistry.html
- 4. http://site.iugaza.edu.ps/fsharif/files/2010/02/Kaplan-molecular-genetics-lecturenotes-2004.pdf
- 5. https://www.vanderbilt.edu/AnS/Chemistry/Rizzo/Chem220b/Ch28.pdf

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand the structure of organic natural products.
CO2	Learn the properties, biological importants of lipids
CO3	Explain the various types, function, structure and properties of amino acids.
CO4	Understand the importance of enzymes and enzymes action.
CO5	Learn the classification and synthesis of nucleic acids

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	1	1	2	1	3	3	1	1	1	1	1
CO2	3	3	1	3	2	3	3	1	1	2	1	1
CO3	3	2	2	2	1	3	2	1	1	1	1	1
CO4	3	2	3	2	1	3	3	2	1	1	1	1
CO5	3	2	2	2	2	3	2	2	1	3	1	1

3. High; 2. Moderate 1. Low

			Section	n A	Section B	Section C
			MCQ	s	Either/or Choice	Either/or Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K2 & K2)	1(K2)
3	CO3	Up to K2	2	K1 & K2	2(K2 & K2)	1(K3)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
No. of	Questions	to be asked	10		10	5
No. of	Questions	to be	10		5	3
answer	red					
Marks	for each Q	uestion	1		4	10
Total I	Marks for e	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	20	65	65%	65%
K3	-	-	30	30	30%	30%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hour	Mode
	Carbohydrates	12Hour s	
	a. Introduction,Properties,Functions,Classificatio n –Reducing and Non Reducing Sugar	2	
UnitI	b. Glucose Structure-Conformation-Stability - Hetero Saccharide (hyaletronic acid and heparin)Structure only	2	PPT presentation, Chalk and Talk.
	c. Metabolism-Glycolysis and its reversal,TCA Cycle	3	
	d. Relation between Glycolysis and respiration.Principles of Bio energetics	2	
	e.Electron transport chain and oxidative phosphorylation	3	
UnitII	Lipids	12 Hours	Mode
	a.Introduction Properties, Biological importants	2	

	- Classification - Simple Lipids		Chalk and Talk,
	b. Compounds Lipids – Derived Lipids –	2	Group Discussion
	Phospho Lipids – Glyco Lipids.	3	and PPT
	c.Fatty acids-Saturated,Unsaturated Fatty	2	presentation.
	acids,Properties	L	
	d.Hydrolysis-Acid number,saponification	2	
	number	4	
	e.Cholesterol-Bio synthesis, Bile salts derived	3	
	from Cholesterol	5	
UnitII	Amino Acids	12	Mode
Ι		Hours	
	a. Introduction –Definition of Amino acids-		
	Synthesis of amino acids- Essential – Non	2	Chalk and Talk,
	essential of Amino acids		PPT Presentation.
	b. Function, Structure, Classification of Amino	3	
	acids	-	
	c.Properties of Amino acids-Solubility, Melting	2	
	point of Amino acids		
	d.Iso Electric point, Ampholytes or Amphoteric	3	
	nature, Zwitterions		
	e.Formation of esters, Ninhydrin reaction	2	
	(oxidative deamination), Reduction, Darkin –	2	
TT •/T	west reaction).	10	
Uniti	Enzymes	12	Mode
X 7		Hound	
V	a Nomencleture Introduction Classification	Hours	
V	a. Nomenclature ,Introduction – Classification –	Hours	Chalk and Talk
V	a. Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing	Hours 2	Chalk and Talk,
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b Mechanism of enzyme action –lock and key 	Hours 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model Coenzymes-Co 	Hours 2 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- 	Hours 2 2 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of 	Hours 2 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP.NAD.NADP.FAD.ATP) their 	Hours 2 2 2 2 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . 	Hours 2 2 2 2 2	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition . 	Hours 2 2 2 2 3	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- 	Hours 2 2 2 2 3	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins 	Hours 2 2 2 3 3	Chalk and Talk, PPT Presentation.
V	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids 	Hours 2 2 2 3 3 12	Chalk and Talk, PPT Presentation.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids 	Hours 2 2 2 3 3 12 Hours	Chalk and Talk, PPT Presentation.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids a.Nucleosides and Nucleotides-Purine and 	Hours 2 2 2 3 12 Hours 2	Chalk and Talk, PPT Presentation. Mode Chalk and Talk,
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleosides and Nucleotides-Purine and pyrimidine bases 	Hours 2 2 2 3 3 Hours 2	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic acids –Difference between DNA and 	Hours 2 2 2 3 3 12 Hours 2	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic acids –Difference between DNA and RNA 	Hours 2 2 2 3 3 12 Hours 2 2	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou p Discussion.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic acids –Difference between DNA and RNA c.Clasification of RNA-Replication 	Hours 2 2 2 3 3 12 Hours 2 3 3 12 Hours 2 3	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou p Discussion.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic acids –Difference between DNA and RNA c.Clasification of RNA-Replication d.Bio synthesis of mRNA- 	Hours 2 2 2 3 3 12 Hours 2 3 12 Hours 2 3	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou p Discussion.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins Nucleic Acids a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic acids –Difference between DNA and RNA c.Clasification of RNA-Replication d.Bio synthesis of mRNA- Transcription.Genetic code 	Hours 2 2 2 3 3 12 Hours 2 3 12 Hours 2 3	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou p Discussion.
V UnitV	 a.Nomenclature ,Introduction – Classification – —Properties –specificity,factors influencing enzyme action . b.Mechanism of enzyme action –lock and key model and induced fit model.Coenzymes-Co factors- c.Prosthetic groups of enzyme(TPP,NAD,NADP,FAD,ATP) their importance in enzymes actions . d.Mechanism of Enzyme inhibition , e.Competitive, un competitive and allosteric- Structure of Peptides and Proteins a.Nucleosides and Nucleotides-Purine and pyrimidine bases b.Nucleic Acids c.Clasification of RNA-Replication d.Bio synthesis of mRNA- Transcription.Genetic code Recombinant DNA Technology -DNA 	Hours 2 2 2 2 3 3 12 Hours 2 2 3 3 2 2 3 2 3 2 2 3 2 3 2	Chalk and Talk, PPT Presentation. Mode Chalk and Talk, PPT Presentation,Grou p Discussion.

Course designed by Dr.M.Pandeeswaran and Mrs.K.Rathika

Programme	B.Sc Chemistry	Programme Code	UCH						
Course Code	20UCHE63	Number of Hours/Cycle	4						
Semester	VI	Max. Marks	100						
Part	III	Credit	4						
	Core Elective Course II C								
Course Title	Green Chemistry			Т	Р				
Cognitive Level Up to K3			60	-	-				

This course deals the concept of various principles, green analytical methods, bio catalytic reaction and future trends in chemistry

Unit I	Introduction to Green Chemistry	12Hours
	Definition – introduction to green chemistry - principles of	
	green Chemistry – use of safer reagents – benefits of green	
	chemistry - why do we need green chemistry - green	
	synthesis of diethanol amine - the roots of innovation - atom	
	economy – limitations.	
Unit II	Green Analytical Methods	12 Hours
	Future trends in green chemistry - green analytical methods -	
	redox reagents - green catalysts - green nano - synthesis -	
	green polymer chemistry - exploring nature - biomimetic,	
	Proliferation of solvent-less reactions; Non-covalent	
	derivatization, Biomass conversion, emission control	
Unit III	Bio Catalytic Reactions	12 Hours
	Green chemistry using bio catalytic reactions – introduction	
	– supported metal catalysts – types of catalysis -	
	fermentation – bio-fertilizers – bio-insecticides – bio-	
	herbicides – use of greener catalyst.	
Unit IV	Microwave Mediated Organic Synthesis	12 Hours
	Microwave mediated organic synthesis – microwave	
	activation – mechanism of microwave – microwave assisted	
	synthesis in green techniques - advantages of microwave	
	radiation – solvent free synthesis - functional group	
	transformation – condensation – oxidation – reduction –	
	multi component reaction.	
Unit V	Ionic Liquids	12 Hours
	Ionic liquids – definition – examples - application of ionic	
	liquid – in alkylation – in epoxiedation- synthesis of ether –	
	Friedelcraft reaction – Diels – Alder reaction – Knoevenagel	
	condensation – Witting reaction – phase transfer catalyst –	
	synthesis - application	

Pedagogy:

Class Room Lectures, Power point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Books

- 1. V. Kumar, "An Introduction to Green Chemistry" Vishal publishing Co. Reprint Edition 2010
- 2. Rashmi Sanghi, M.M Srivastava "Green Chemistry" Fourth Reprint 2009 References Book
- 3. Anastas & Warner, Green Chemistry: Theory & Practice, Oxford Univ. Press, New York, 1998

Reference books

1. Green chemistry- environment friendly alternatives- editiors: Rashmisanghi. MM. Sri vasta fourth re-print 2009. Norosa publishing house pvt. Ltd.

2. Ahluwalia V.K. and Kidwal, M.R. New Trends in Green chemistry, Anamalaya Publishers 2005.

E-Resources:

- 1. https:// www.chem.pg.gda.pl
- 2. https://www.mdpi.com
- 3. https:// www.asdlib.org
- 4. https://www.researchgate.net
- 5. https:// scripps.edu

Course outcomes

On successful completion of the course, students will be able to

No.	Course outcome
CO1	Outline the principles of green chemistry
CO2	Identify the analytical methods of green chemistry
CO3	Acquire the knowledge of bio catalytic reactions
CO4	Relate the knowledge Microwave mediated organic synthesis
CO5	Gain the knowledge of ionic liquids and organic synthesis.

Mapping of Programme outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	1	1	2	2	2	2	2	1	1	1	1
CO2	2	2	1	2	2	1	1	1	1	1	1	1
CO3	1	1	2	2	1	1	1	1	1	1	1	1
CO4	1	2	3	2	2	1	1	2	1	1	1	1
CO5	2	3	2	2	2	1	1	2	1	1	1	1
1-Lo)w	2	-Mode	erate		3-I	High					

2-Moderate 3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			Section A		Section B	Section C
			МС	Qs	Either/or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
2	CO2	Up to K2	2	K1 & K2	2(K2 & K2)	1(K2)
3	CO3	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
4	CO4	Up to K3	2	K1 & K2	2(K2 & K2)	1(K3)
5	CO5	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
No. of	f Questior	ns to be	10		10	5
asked						
No. of	f Questior	ns to be	10		5	3
answered						
Marks for each Question		1		4	10	
Total Marks for each			10		20	30
Sectio	n					

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A	Section B	Section C	Total	% of Marks	Consolidated	
	(No	(Either/or)	(Either/or)	Marks	without	(Rounded	
	Choice)				choice	off)	
K1	5	-		5	5%	5%	
K2	5	40	20	65	65%	65%	
K3			30	30	30%	30%	
Total Marks	10	40	50	100	100%	100%	

Lesson Plan

Unit I	Introduction to Green Chemistry	12 Hours	Mode
	a)Green Chemistry – Definition – Principles of	2	Chalk and
	Green Chemistry		talk, Power
	b)Why is this new area of Chemistry getting to	3	point
	much attention		presentation,
	c)Why should chemist pursue the Goals of	3	Group
	Green Chemistry		Discussion
	d)The roots of innovation	2	
	e)Atom economy – Limitations	2	
Unit II	Green Analytical Methods	12 Hours	
	a)Future trends in Green Chemistry	2	
	Green analytical methods, Redox reagents,	2	
	b)Green catalysts; Green nano-synthesis,	2	Chalk and
	c)Green polymer chemistry,	2	talk, Power
	d)Exploring nature, Biomimetic, Proliferation of	2	point
	solvent-less reactions;		presentation
	e)Non-covalent derivatization. Biomass		
	conversion, emission control	2	
Unit III	Bio Catalytic Reactions	12 Hours	
	a)Green Chemistry Using Bio Catalytic	2	
	Reactions – Introduction	_	
	b) Fermentation and Bio transformations.	2	Chalk and
	c) Production of Bulk and fine chemicals by	3	talk, Power
	microbial fermentation Antibiotics.	Ũ	point
	d)Vitamins - Bio catalyses synthesis of	3	presentation
	industrial chemicals by bacterial constructs.	C	
	e)Future Tends.	2	
		4	
Unit IV	Microwave Mediated Organic Synthesis	12 Hours	
	a)Solvent free microwave- assisted organic	3	
	synthesis: Introduction.	-	
	b)Solvent – free techniques microwave		Chalk and
	activation.	2	talk, Power
	c)Benefits and limitations of microwave assisted	3	point
	synthesis.	5	presentation
	d)Non- traditional (greener alternatives to	4	
	functional group transformation condensation	4	
	oxidation and reduction reaction		
		10.11	
Unit V	Ionic Liquids	12 Hours	
	a)Ionic liquids: definition- examples- synthesis	3	
	tunable Physical properties		Chalk and
	Application in organic synthesis-	3	talk, Power
	hydroformylation of		point .
	b) olefins, carbonylation, aryl halides,	3	presentation,
	dimerisation of 15 butadiene		
	c)Diels Alder reaction and total synthesis of	2	
	pravadoline. General uses of liquids.	3	

Course Designed by Dr.M.Pandeeswaran

Programme	B.Sc Chemistry	Programme Code		UCH		
Course Code	20UCHC6P	Number of Hours/Cycle		3		
Semester	VI	Max. Marks		100		
Part		Credit		4		
		Core Practical III				
Course Title	Gravimetric .	Analysis and Organic	L	Т	Р	
	Preparation					
Cognitive Level Up		Jpto K4			30	

The practical course describes molecular weight determination, phase diagrams, kinetic studies, thermal and electrochemical experiments.

List of Experiments

I. Graveimetric Analysis

- 1. Estimation of lead as lead chromate.
- 2. Estimation of barium as barium chromate
- 3. Estimation of calcium as calcium oxalate monohydrate
- 4. Estimation of copper as cuprous thiocyanate.
- 5. Estimation of nickel as Ni DMG.

II. Organic Preparation / Separation

1. Nitration

i.m-dinitrobenzene from nitrobenzene

- ii.Picric acid from phenol
- 2. Bromination: p-bromoacetanilide from acetanilide.
- 3. Hydrolysis: Aromatic acid from (a) an ester (b) an amide.
- 4. Oxidation : Benzonic acid from benzaldehyde.
- 5. Benzoylation: (a) Amine (b) phenols
- 6. Acetylation : (a) Amine (b) phenols

Separation of mixtures

A mixture containing an acid or a base and a neutral compound (Acid or alkali separation)

III. To analyse Micronutrients of Soil sample of our college campus. (Demo) After completion of this course, the students will be able to:

CO1	Recognise many functional groups and their reactivity.								
CO2	Critically ev	aluate da	ata collected	to determine	the identity,	purity	and yield of		
	products.								
CO3	Perform co	ommon	laboratory	techniques,	including	reflux,	distillation,		
	recrystallization, vacuum filtration and aqueous extraction.								

Scheme of Evaluation (Max.marks100)

Internal Assessment 40 Marks

Regular Test in the Class	30 Marks		
Observation note book	10 marks		
Total	40 marks		

Record Note book	10 marks						
Viva voce	10 marks						
Organic preparation (10 marks)							
Procedure	2 marks						
Crude sample	6 marks						
Recrystallised sample	2 marks						
Gravimetric Estimation (30 marks)							
Procedure	10 marks						
Estimation	20 marks						
Less than 2% Error	20 marks						
2-3% Error	18 marks						
3-4% Error	16 marks						
3-5% Error	14 marks						
Greater than 5% Error	8 marks						

External Examination: 60 Marks (3 hours)

Programme	B.Sc.Chemistry	Programme Code		UC	H			
Course Code	20UCHC6Q	Number of Hours/Cycle		2				
Semester	VI	Max. Marks		100				
Part		Credit	4					
Core Practical IV								
Course Title	Organic Analyses And Estimations		L	Т	Р			
Cognitive Level Up		pto K4			30			

The lab course describes the analysis of organic compounds and presence of elements and its characteristics to develop the skill of experimenting.

I. Organic Analysis

Analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative – acids, phenols, aldehydes, ketones, esters, nitrocompounds, amines (primary, secondary and tertiary), amides, anilides, aliphatic diamide, side chain and nuclear halogen compounds, aliphatic diamide containing sulphur and monosaccharides.

II. Organic Estimation

- a. Estimation of phenol
- b. Estimation of aniline
- c. Estimation of glucose.

III. Chromatographic Techniques (Demo)

- a. Identification of Amino Acids by TLC
- b. Separation of Leaf Pigments by Column Chromatography

After completion of this course, the students will be able to:

CO1	To predict the outcome and mechanism of some simple organic reaction reactions using understanding relative reactivity of functional groups
CO2	Estimate the amount of Phenol and Aniline

Scheme of Evaluation (Max.marks100) Internal Assessment 40 Marks

Regular Test in the Class	30 Marks
Observation note book	10 marks
Total	40 marks

External Examination: 60 Marks (3 hours)

Record Note book	10 marks
Viva voce	10 marks
Organic estimation (20 mark	s)
Procedure	5 marks
Estimation 15	
Less than 3% Error	15

3-4% Error	13
4-5% Error	10
5-6% Error	8
Organic analysis (20 marks))
Preliminary reaction	2 marks
Elements present	4 marks
Aliphatic or aromatic	3 marks
Saturated/Unsaturated	3 marks
Functional group	6 marks
Derivative	2marks

Programme	B.Sc,Chemistry	Programme Code		UC	Н
Course Code	20UCHC6R	Number of Hours/Cycle		3	
Semester	VI	Max. Marks		100	
Part		Credit		4	
Core Practical V					
Course Title	Experime	ents in Physical Chemistry	L	Т	Р
Cognitive Level Up		Up to K4			30

The practical course describes molecular weight determination, phase diagrams, kinetic studies, thermal and electrochemical experiments.

List of Experiments

1. Determination of molecular weight by

- a. Transition temperature method sodium thiosulphate pentahydrate, strontium chloride hexahydrate and sodium acetate trihydrate.
- b. Cryoscopic method Rast method camphor and naphthalene.

2. Phase diagram involving

- a. Simple Eutectic and
- b. Compound formation

3. Critical solution temperature

Determination of CST of phenol – water system and effect of impurity on CST – strength of sodium chloride.

4. Thermo chemistry

Heat of solution - potassium dichromate, ammonium oxalate and oxalic acid.

5. Kinetics

Determination of rate constant - Hydrolysis of Ester.

6. Electrochemistry

- a) Conductivity
 - i) Determination of cell constant of the cell and equivalent conductance of solution.
 - ii) Conductivity titration between an acid and a base (HCl vs NaOH)
- b) Potentiometric titrations
 - 1. KMnO₄ Vs FeSO₄
 - 2. K₂Cr₂O₇ Vs FeSO₄
 - 3. HCl vs NaOH
- c) pH

HCl Vs NaOH

7. Adsorption

Adsorption of acetic acid on activated carbon charcoal

After completion of this course, the students will be able to:

CO1	Develop the skill on molecular weight determination.
CO2	Perform kinetic experiments
CO3	Demonstrate thermal and electrochemical experiments.

Scheme of Evaluation (Max.marks100) Internal Assessment 40 Marks

Regular Test in the Class	30 Marks
Observation note book	10 marks
Total	40 marks

External Examination: 60 Marks (3 hours)

Viva voce	10 marks
Record Notebook	10 marks
For completion of the experiment	20 marks
Short procedure	10 marks
Result	10 marks
Total	60 marks

Programme	B.Sc.Chemistry	Programme Code		UCH	I
Course Code	20UCHS61	Number of Hours/Cycle		2	
Semester	VI	Max. Marks		50	
Part	IV	Credit		2	
Skill Based Course III					
Course Title	Po	lymer Chemistry	L	T	Р
Cognitive Leve	Ì	Up to K3	30	-	-

The course provides the basic knowledge in Chemistry of Polymerization, Moulding process techniques, Inorganic and Commercial polymers, Natural and Synthetic rubbers.

Unit I	Introduction and Classification of Polymers	6 Hours
	Basic concepts-Classification of polymers-Nomenclature-	
	Natural and Synthetic polymers- Organic and Inorganic	
	polymers-Thermoplastics and thermo sets-Plastics, elastomers,	
	fibers and liquid resins-Addition polymers and condensation	
	polymers-homopolymers-linear, branched and cross linked	
	polymers-graft and block co-polymers- Basic concept of	
	monomers-Functionality.	
Unit II	Polymerization and MouldingTechniques	6 Hours
	Addition polymerization-Free radical polymerization-Initiation,	
	Propagation and Termination-Ionic polymerization-Cationic	
	and Anionic co-ordination polymerization-Ziegler natta	
	catalysis.	
	Moulding process Technique: Compression moulding, Injection	
	moulding, Transfer moulding, Extrusion moulding.	
Unit III	Inorganic Polymers	6 Hours
	General properties-Classification-Glass transition temperature	
	from important inorganic polymers-Boron based polymers-	
	Polymeric boron nitride-Polycarboranes-Phosphorus	
	basedpolymers-Polyphosphonitrilic chloride-Polyphosphoric	
	acids-Phosphorus based network polymers-Silicon based	
	polymers-Dimethyl-silicon dichloride, Trimethyl silicon	
	chloride, Monomethyl silicon chloride.	
	Sulphur-based inorganic polymers – Linear chain polymers,	
	Chalcogenide glass	
Unit IV	Commercial Polymers	6 Hours
	Plastics-Thermoplastics and thermosets: Manufacture ,	
	properties and application of the following plastics-LDPE,	
	polypropylene, polystyrene PVC, PMMA, PAN, Polyacrylic	
	acid, Polymethacrylic acid. Polyamides- Nylon 6.6 and	
	Nylon 6. Polycarbonates. Nomex, Kevlar. Polyesters- PET -	
	Novalac formation-Urea-formaldehyde resin.	
Unit V	Natural and Synthetic Rubbers	6 Hours
	Natural rubber-Vulcanisation-Manufacture. General properties	
	and applications of SBR, Polyisoprene, Polybutadiene, Butyl	

rubber, Ethylene	e-Propylene rubber, Neoprene rubb	er, Speciality	
rubbers: Silicon	n rubbers, Nitrile rubbers, Polyaci	ylic rubbers-	
Polyurethane	rubber-Hypalon-Fluorocarbon	elastomers-	
Thermoplastic e	elastomer, Reclaimed rubber, Foam	rubber.	

Course Outcomes

On successful completion of the course, the students will be able to

CO1	Classify the different kinds of polymers.
CO2	Explain the polymerization and moulding process techniques.
CO3	Acquire knowledge on inorganic polymers.
CO4	Recognize the commercial polymers.
CO5	Relate the detailed knowledge of Natural and Synthetic rubbers.

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and laboratory and testing metal.

Text Books

- 1. Sharma B. K., (2000), Polymer Chemistry, Goel Publishing House, Meerut.
- 2. Gowarikar V.R., Viswanathan N.V., (2003), Polymer science, New age International.

Reference Books

- 1. Sharma B.K., (2016), *Industrial Chemistry* (Including Chemical Engineering) Goel Publishing House, 16th Revised and Enlarged Edition.
- 2. Jain P.C., Monika Jain., (2012), Engineering chemistry, Dhanpat Rai Publishing Company.
- 3. Billmeyer Jr. F.W., (2007), Text book of Polymer Science, Wiley, India.

E- Resources

- 1. https://funscience.in/classification-of-polymers/
- 2. https://www.hardiepolymers.com/knowledge/polymer-manufacturing-processes/
- 3. https://polymerdatabase.com/polymer%20classes/Inorganic%20Polymers.html
- 4. https://www.askiitians.com/iit-jee-solutions-colligative-properties/polymers-ofcommercial-importance/
- 5. https://www.mdpi.com/2073-4360/12/4/905
- 6. https://www.jagranjosh.com/general-knowledge/list-of-some-common-manmade-polymers-and-their-uses-1482487493-1

	mapping of Frogramme specific outcomes with Course Outcomes											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	2	2	2	2	2	1	2	1	1	1	1
CO2	3	2	2	3	3	3	2	2	1	1	`1	1
CO3	2	2	2	2	2	2	1	1	1	1	1	1
CO4	2	2	2	3	3	2	2	2	1	1	1	1
CO5	3	2	3	2	2	2	1	1	1	1	1	1
1-Lov	V	2-]	Moder	ate		3-Hig	gh					

Mapping of Programme specific outcomes with Course Outcomes

			Section A		Section B
			Either	or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K2	1(K2)
2	CO2	Up to K3	2	K1 & K2	1(K3)
3	CO3	Up to K2	2	K1 & K2	1(K2)
4	CO4	Up to K2	2	K1 & K2	1(K2)
5	CO5	Up to K3	2	K1 & K2	1(K3)
No. of Q	Questions to	be asked	10		5
No. of Q answer	Questions to ed	o be	5		3
Marks f	or each Qu	estion	3		5
Total M	arks for ea	ch Section	15		15

Articulation Mapping-K Levels with Course Outcomes(COs)

K1-Remembering and recalling facts with specific answers K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels									
Section A	Section B	Total	% of Marks	Conso					
(Fithon/on	(Onen	Monka	without abaias	(Down					

K Levels	Section A	Section A Section B Total % of		% of Marks	Consolidated	
	(Either/or Choice)	(Open Choice)	Marks	without choice	(Rounded off)	
V1	15		15	27.2	270/	
	15	-	15	21.2	21%	
K2	15	15	30	54.5	55%	
K3		10	10	18.1	18%	
Total Marks	30	25	55	100	100%	

Lesson Plan

Unit I	Introduction and Classification of Polymers	6 Hours	Mode
	a)Basic concepts-Classification of polymers- Nomenclature-Natural and Synthetic polymers-	2	Chalk and talk
	b)Organic and Inorganic polymers Thermoplastics and thermo sets-Plastics, elastomers, fibers and liquid resins-Addition polymers and condensation polymers- homopolymers-linear, branched and cross linked polymers	2	Power point presentation Seminar Group discussion
	c)Graft and Block co-polymers- Basic concept of monomers-Functionality	2	
Unit II	Polymerization and Moulding Techniques	5 Hours	Mode
	a)Addition polymerization-Free radical polymerization-Initiation, Propagation and Termination-Ionic polymerization	2	Chalk and talk Power point
	b)Cationic and Anionic co-ordination polymerization-Ziegler natta catalysis. Moulding process Technique: Compression	2	presentation Seminar Group

	c)moulding, Injection moulding, Transfer moulding, Extrusion moulding	2	discussion
Unit III	Inorganic Polymers	6 Hours	Mode
	a)General properties-Classification-Glass transition temperature from important inorganic polymers-Boron based polymers-Polymeric boron nitride Polycarboranes-Phosphorus based polymers- Polyphosphonitrilic chloride-Polyphosphoric acids-Phosphorus based network polymers b)Silicon based polymers-Dimethyl-silicon dichloride, Trimethyl silicon chloride, Monomethyl silicon chloride.	2	Chalk and talk Power point presentation Seminar Group discussion
	c)Sulphur-based inorganic polymers – Linear chain polymers, Chalcogenide glass	2	
Unit IV	Commercial Polymers	6 Hours	Mode
	a)Plastics-Thermoplastics and thermosets: Manufacture , properties and application of the following plastics-LDPE, polypropylene, polystyrene PVC	2	Chalk and talk Power point presentation
	b)PMMA, PAN, Polyacrylic acid, Polymethacrylic acid. Polyamides- Nylon 6.6 and Nylon 6. Polycarbonates.	2	Seminar Group discussion
	C)Polyesters-PET-Novalac formation-Urea- formaldehyde resin.	2	
Unit V	Natural and Synthetic Rubbers	6 Hours	Mode
	a)Natural rubber-Valcanisation-Manufacture, General properties and applications of SBR,	2	Chalk and talk
	2	Power point presentation Seminar Group discussion	
	c)Polyurethane rubber-Hypalon-Fluorocarbon elastomers-Thermoplastic elastomer, Reclaimed rubber, Foam rubber.	2	

Course designed byDr. G.N.Kousalya

Programme	B.Sc.Chemistry Programme Code					
Course Code	20UCHS62	Number of Hours/Cycle		2		
Semester	VI	Max. Marks				
Part	IV		2			
	Skil	Based Course III				
Course Title	D	Dairy Chemistry	L	Т	Р	
Cognitive Leve	l	Up to K3 30			-	

The course provides the basic knowledge of Milk, Composition, Standards, Manufacturing Process of Cream, Butter, Paneer, Cheese, Ice-cream, Dahi, Condensed milk, Evaporated milk, Milk powder, Quality and food safety.

Unit I	Composition Of Milk	6 Hours					
	Definition of Milk - Composition of Milk - Preservation of Milk -						
	Grading of Milk - Milk Processing - Pasteurisation - Phosphatase						
	enzyme - Homogenisation - Fat Separation – Standardisation of						
	Milk - Nutritive value of milk - Energy value - Effect of heat -						
	temperature and acidity on milk - Carbohydrates of Milk - Lactose						
	Structure - properties - browning reaction.						
Unit II	Milk Products - I	6 Hours					
	Cream: Introduction - Definition - Classification - Cream						
	Neutralization - Standardization of cream - Pasteurization of						
	Cream - Packaging and storage.						
	Butter: Introduction - Composition of Butter - Definition -						
	Production - Classification of butter.						
	Paneer: Introduction – Standards – Physico-Chemical changes						
	during manufacturing - Paneer from Cow milk - recent						
	developments in Paneer manufacturing - Factors affecting quality						
	and yield of Paneer.						
Unit III	Milk Products - II						
	Cheese: Introduction - World market of Cheese - Definition-						
	Classification - Manufacture						
	Ice cream: Introduction - Definition and standards-Production -						
	Classification – Ingredients -methods of manufacturing.						
	Dahi: Introduction - Food safety and standards regulation -						
	Industrial method of making Dahi – Standardisation –						
	Homogenization - Packaging and fermentation - Storage -						
	Packaging of Dahi.						
Unit IV	Milk Products - III	6 Hours					
	Condensed and Evaporated milk: Introduction - Evaporation						
	unit and classification of Evaporators - Processing and storage of						
	sweetened condensed milk - Defects in sweetened condensed milk						
	- processing-packaging and storage of Evaporated milk - Defects						
	in Evaporated milk						
	Milk powders: Introduction - Definition-Processing - Packaging						
	and storage - Spray Drying of milk - Classification of Spray Drier						
	operatios -salient features of SMP and WMP production -						
	Packaging of SMP and WMP						
Unit V	Quality and Food Safety	6 Hours					

Proteins in milk - Physical and chemical properties of protein -	
Enzymes - Milk borne diseases - Vitamins and Minerals in milk -	
Evaporated milk - Physical and chemical properties of Dried Milk	
- Clean in Progress (CIP) - Quality and Food Safety System -	
HACCP – Types of microbes in milk - Microbiology -	
Bacteriological - Milk borne diseases.	

Text Books

- 1. Rubesh Nandan, 2011, A Textbook of Dairy Chemistry, Random Publications.
- 2. Shukla A.N, 2010, Textbook of Dairy chemistry, DPH.

Reference Books

- 1. Alex.V. Ramani, 2010, Food Chemistry, MJP Publishers.
- 2. Dr. Jayashree Ghose, 2013, Fundamental Concepts of Applied Chemistry, S.Chand Publications.

E- Resources

- 1. https://www.researchgate.net/publication/347950961_Milk_Nutritional_Composit ion_and_Its_Role_in_Human_Health
- 2. https://www.fao.org/3/i3396e/i3396e.pdf
- 3. https://en.wikipedia.org/wiki/Curd
- 4. https://www.agrimoon.com/wp-content/uploads/Condensed-and-Dried-Milk.pdf
- 5. https://ncert.nic.in/textbook/pdf/lehe106.pdf.

Course outcomes

On successful completion of the course, students will be able to

No.	Course outcome									
COI	Explain the Composition of milk, Preservation, Homogenisation, Nutritive value,									
COI	Acidity on milk.									
CO2	Acquire the knowledge about Cream, Butter and Paneer.									
CO3	Gain the basic concept of Cheese, Ice-cream and Dahi									
COA	Explain the classification, processing packaging and storage of condensed,									
004	evaporated milk and milk powder.									
COF	Identify the knowledge of physical and chemical properties of protein – enzymes,									
005	milk born diseases, and quality and food safety.									

Mapping of Programme outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	1	1	2	2	2	2	1	1	1	1	1	1
CO2	2	2	1	2	2	2	1	1	1	1	1	1
CO3	2	2	2	2	2	2	1	2	1	1	1	1
CO4	1	2	3	2	2	2	1	2	1	2	1	1
CO5	2	1	2	2	2	2	1	2	1	1	1	1

1-Low; 2-Moderate; 3-High

Articulation Mapping-K Levels with Course Outcomes(COs)

			S	ection A	Section B
			Eithe	r/or Choice	Open Choice
Units	COs	K-Level	No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K2	1(K2)
2	CO2	Up to K3	2	K1 & K2	1(K3)
3	CO3	Up to K2	2	K1 & K2	1(K2)
4	CO4	Up to K3	2	K1 & K2	1(K3)

5	CO5	Up to K2	2	K1 & K2	1(K2)
No. of (Questions to b	be asked	10		5
No. of Q answer	Questions to b red	be	5		3
Marks f	or each Ques	tion	3		5
Total M	larks for each	Section	15		15

K1-Remembering and recalling facts with specific answers K2-Basic understanding of facts and stating main ideas with general answers K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (Either/or Choice)	Section B (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	15	-	15	27.2%	27%
K2	15	15	30	54.5%	55%
K3		10	10	18.1%	18%
Total Marks	30	25	55	100%	100%%

∐nit I	Composition Of Milk	6 Hours	Mode
CIIII I	Composition Of Mink	0 110015	mouc
	a) Definition of Milk - Composition of Milk -		
	Preservation of Milk - Grading of Milk		
	C	2	
			Chalk and
	b) Milk Processing - Pasteurisation - Phosphatase	2	talk, Power
	enzyme - Homogenisation - Fat Separation -		point
	Standardisation of Milk - Nutritive value of milk		presentation,
	- Energy value		Group
	c) - Effect of heat - temperature and acidity on	2	Discussion
	milk - Carbohydrates of Milk - Lactose Structure		
	- properties - browning reaction.		
T T •4 T T		(11	
Unit II	Whik Products - 1	6 Hours	Mode
	a) Cream : Introduction - Definition -		
	a) Cream : Introduction - Definition - Classification - Cream Neutralization -	2	
	a) Cream : Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of	2	
	a) Cream : Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage.	2	
	a) Cream : Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage.	2	
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - 	2	
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. 	2	Chalk and
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. 	2	Chalk and talk, Power
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. c) Paneer: Introduction - Standards - Physico- 	2 2 2 2 2	Chalk and talk, Power point
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. c) Paneer: Introduction - Standards - Physico- Chemical changes during manufacturing - Paneer 	2 2 2 2 2	Chalk and talk, Power point presentation
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. c) Paneer: Introduction - Standards - Physico- Chemical changes during manufacturing - Paneer from Cow milk - recent developments in Paneer 	2 2 2 2 2	Chalk and talk, Power point presentation
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. c) Paneer: Introduction - Standards - Physico- Chemical changes during manufacturing - Paneer from Cow milk - recent developments in Paneer manufacturing - Factors affecting quality and integer 	2 2 2 2 2	Chalk and talk, Power point presentation
	 a) Cream: Introduction - Definition - Classification - Cream Neutralization - Standardization of cream - Pasteurization of Cream - Packaging and storage. b)Butter: Introduction - Composition of Butter - Definition - Production - Classification of butter. c) Paneer: Introduction - Standards - Physico- Chemical changes during manufacturing - Paneer from Cow milk - recent developments in Paneer manufacturing - Factors affecting quality and yield of Paneer. 	2 2 2 2	Chalk and talk, Power point presentation

Lesson Plan

	 a) Cheese: Introduction - World market of Cheese - Definition-Classification - Manufacture b) Ice cream: Introduction - Definition and standards-Production - Classification - Ingredients - methods of manufacturing. c)Dahi: Introduction - Food safety and standards 	2	Chalk and
	regulation - Industrial method of making Dahi – Standardisation – Homogenization - Packaging and fermentation – Storage - Packaging of Dahi.	2	talk, Power point presentation
Unit IV	Milk Products – III	6 Hours	Mode
	a)Condensed and Evaporated milk: Introduction - Evaporation unit and classification of Evaporators - Processing and storage of sweetened condensed milk –	2	
	 b)Defects in sweetened condensed milk - processing-packaging and storage of Evaporated milk - Defects in Evaporated milk c)Milk powders: Introduction - Definition-Processing - Packaging and storage - Spray Drying of milk - Classification of Spray Drier operatios -salient features of SMP and WMP production - Packaging of SMP and WMP 	2	Chalk and talk, Power point presentation
Unit V	Quality And Food Safety	6 Hours	Mode
	a)Proteins in milk - Physical and chemical properties of protein – Enzymes	2	
	b)Milk borne diseases - Vitamins and Minerals in milk - Evaporated milk - Physical and chemical properties of Dried Milk - Clean in Progress (CIP)	2	Chalk and talk, Power point
	c) Quality and Food Safety System - HACCP – Types of microbes in milk - Microbiology - Bacteriological - Milk borne diseases.	2	presentation,

Course Designed byDr.M.Pandeeswaran, Mrs.V.Vanitha and Mr.C.Sivakumar

Value Added Courses

Programme	B.Sc.	Programme Code		U	СН
	Chemistry				
Course Code	20CCHE51	Number of Hours/Cycle		2	
Semester	V	Max. Marks		50)
Part		Credit			
	V	alue Added Course III			
Course Title	Paper &	&Pulp Technology	L	Т	Р
			30	-	-

Preamble

To understand the various methods of pulp manufacture and the process involved in paper manufacture.

Unit	Description	Hours
Ι	Introduction, Manufacture of Pulp, Various raw materials used for the preparation of Pulp.	6 Hours
II	Preparation of Sulphite Pulp, Soda pulp, Rag Pulp	6 Hours
III	Various processes: Beating, Refining, Filling sizing and colouring.	6 Hours
IV	Manufacture of paper, calendaring, uses.	6 Hours
V	Various Paper industries in India.	6 Hours

Pedagogy

Chalk and Talk method, Group Discussion, Assignments, Quiz, Brainstorming Activities, Seminar and Powerpoint presentations

Text Book

2. Sharma B.K (2016), Industrial Chemistry (Including Chemical Engineering), 16th Revised and Enlarged Edition, Goel Publishing House, Meerut

Reference Books

- 1. Sharma B.K., (2016), "Industrial Chemistry (Including Chemical Engineering)", Goel Publishing House, 16th Revised and Enlarged Edition
- 2. Soni P.L., (2014), "Organic Chemistry". Sultan Chand & Sons
- 3. Arun Bahl and Bahl.B.S., (2016), "*Text Book for Organic Chemistry*", Sulthan Chand & Company Limited, New Delhi.

Programme	All	Programme Code		UCH	
Course Code	20CCHE61	Number of Hours/Cycle		2	
Semester	VI	Max. Marks			
		Credit			
	Valu	e Added Course -IV			
Course Title	L	eather Technology	L	Т	Р
			30	-	-

The course provides the basic knowledge in manufacturing of leather, varios process and pollution problems caused by tanneries and controlling methods.

Units	Description	Hours
Unit I		6 Hours
	History of tanning industry in India - Conventional tanning	
	process – Animal skin.	
Unit II		6 Hours
	Manufacture of leather, preparation of hides for tanning, use of	
	various inorganic and organic chemicals for tanning process.	
Unit III		6 Hours
	Various processes of tanning - soaking, liming, deliming,	
	dehairing and bating.	
Unit IV		6 Hours
	Vegetable tanning – synthetic tanning, chrome tanning,	
	finishing of leather	
Unit V		6 Hours
	Pollution problems caused by tanneries and its control.	
	Treatment of tannery effluents by primary Secondary and	
	tertiary processes, Use of reverse Osmosis system for the	
	treatment of polluted water.	

Pedagogy

Chalk and Talk method, Group Discussions, Assignments, Quiz, Brainstorming Activities, Seminar and laboratory and testing metal.

Text Books:

 Sharma B.K., (2016), *Industrial Chemistry* (Including Chemical Engineering) Goel Publishing House, 16th Revised and Enlarged Edition

Reference Books::

1. Kanagasabai, S. (2010). Textbook on Environmental Studies, PHI Learning Private Limited, New Delhi, India.

EVALUTION PATTERN (OBE)

Examination Pattern for Core and Allied Courses to be implemented from the Academic Year 2021-2022

Two Continuous Internal Assessment (CIA) and One End Semester Examination (ESE) is conducted .The marks are distributed as follows:

Nature of Study	CIA	ESE	Total
Theory	40	60	100
Practical	40	60	100

Continuous Internal Assessment (CIA) - UG

The pattern of question paper for Continuous Internal Assessment (CIA) for UG for III and IV semesters is as follows. The duration for the Internal test is $1\frac{1}{2}$ hours. Equal importance is given to all the units.

Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Multiple Choice Questions	6	6	1	6
В	Paragraph Questions (Inbuilt choice)	3	3	4	12
С	Essay Questions (Open choice)	3	2	6	12
Total					

Blue Print of the Question Paper (CIA)Maximum Marks: 30

Continuous Internal Assessment components are:

- Two internal assessment is conducted for 30 marks each (The average of the marks of two internal assessments will be taken ((30 + 30 / 2) = 30)
- 2. Two Assignment to be submitted for 5 marks each (The average of two assignments is taken for 5 marks)
- Seminar / Quiz / Group Discussion 5 marks (If Quiz is conducted, the average of two quizzes is taken for 5 marks)
- 4. Third test may be allowed for absentees of anyone of the two assessments for genuine reasons.

Continuous Internal Assessment (CIA) - PG

The pattern of question paper for Continuous Internal Assessment (CIA) for PG for III and IV is as follows. The duration for the assessment is 2 hours. Equal importance is given to all the units.

	Blue Print of the Question P	aper (CIA)	Maximum	Marks: 45		
Sections	Types of questions	No. of	No. of questions to	Marks for each	Total Marks	
		questions	be answered	question		
А	Multiple Choice Questions	6	6	1	6	
В	Paragraph Questions	5	5	3	15	
В	(Inbuilt choice)	5	5	5	15	
C	Essay Questions	5	3	8	24	
C	(Open choice)	5	5	0	24	
	Total					

Continuous Internal Assessment components are:

- 1. Two internal assessment is conducted for 45 marks each
 - (The marks of two internal assessments will be converted into 30 marks ((45+45)/3) = 30)
- 2. Two Quizzes is to be conducted for 5 marks each (The average of two quizzes is taken for 5 marks)
 - (The average of two quizzes is taken for Sominar / Group Discussion 5 marks
- 3. Seminar / Group Discussion 5 marks
- 4. Third test may be allowed for absentees of anyone of the two assessments for genuine reasons.

End Semester Examinations (ESE)

Duration of the End Semester Examination is 3 Hours. Equal importance is given to all the units. The pattern of Question Paper for the End Semester Examination is as follows: Plue Print of the Question Paper $(UC \ f PC)$

Blue Print of the Question Paper (C		UG & PG)		KS: 00	
Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Multiple Choice Questions	10	10	1	10
В	Paragraph Questions (Inbuilt choice)	5	5	4	20
С	Essay type Questions (Open choice)	5	3	10	30
		Total			60

Evaluation Pattern

Under Graduate

- 1. Passing minimum is 35% in external examination, out of 60 i.e. 21 out of 60 will be taken as pass mark for UG students.
- 2. An aggregate of 40 marks for UG (sum of Continuous Internal Assessment and End Semester Examination).

Post Graduate

- 1. A Passing minimum of 45% in external examination out of 60 i.e. 27 out of 60 will be taken as pass mark for PG students.
- 2. An aggregate of 50 marks for PG (sum of Continuous Internal Assessment and End Semester Examination).

Examination Pattern for Part IV Courses

As regards Part IV courses such as Skill Based, Non Major Elective. Value Education, and Environmental Studies Two Continuous Internal Assessment (CIA) and One End Semester Examination (ESE) is conducted .The marks are distributed as follows:

Nature of Study	CIA	ESE	Total
Theory	20	30	50
Practical	20	30	50

Continuous Internal Assessment (CIA) - UG

The pattern of question paper for Continuous Internal Assessment (CIA) for UG is as follows. The duration for the internal test is 1 hour. Equal importance is given to all the units.

Blue I fint of the Question I aper (CIA)					
Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Paragraph Questions	5	5	2	10
В	Essay type Questions (open choice)	2	1	5	5
Total					15

Plue Drint of the Question Deport (CIA) Maximum Market 15

Continuous Internal Assessment components are:

1. Two internal tests are conducted for 15 marks each (The average of the marks of two internal assessments will be taken

$$((15+15) / 2) = 15)$$

2. One Assignment is to be submitted for 5 marks

End Semester Examinations (ESE)

Duration of the End Semester Examination is 2 Hours. Equal importance is given to all the units. The pattern of Question Paper for the End Semester Examination is as follows:

Blue Print of the Question Paper		(UG)	Maximum Marks: 30		
Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Paragraph Questions	5	5	3	15
В	Essay type Questions (open choice)	5	3	5	15
Total					30

Evaluation Pattern

Under Graduate

- 1. Passing minimum is 35% in external examination, out of 30 i.e. 11 out of 30 will be taken as pass mark for UG students.
- 2. An aggregate of 20 marks for UG (sum of Continuous Internal Assessment and End Semester Examination).

Examination Pattern for Value Added Courses

As regards Extra Credit Value Added Courses, the study martial will be prepared by the course teacher. One Internal Assessment will be conducted for 20 marks and the End Semester Examination will be conducted for 30 marks and the evaluation will be made by the course teacher. The marks are distributed as follows:

Nature of Study	IA	ESE	Total
Theory	20	30	50
Practical	20	30	50

Internal Assessment (IA)

The pattern of question paper for Internal Assessment (IA) is as follows. The duration for the internal test is 1 hour. Equal importance is given to all the units.

Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Paragraph Questions	5	5	2	10
В	Essay type Questions (open choice)	2	1	10	10
Total					20

Blue Print of the Question Paper (IA) Maximum Marks: 15

End Semester Examinations (ESE)

Duration of the End Semester Examination is 2 Hours. Equal importance is given to all the units. The pattern of Question Paper for the End Semester Examination is as follows:

Blue Print of the Question Paper		Maximum Marks: 30			
Sections	Types of questions	No. of questions	No. of questions to be answered	Marks for each question	Total Marks
А	Paragraph Questions	5	5	3	15
В	Essay type Questions (open choice)	5	3	5	15
Total				30	

Evaluation Pattern

Under Graduate

- 1. Passing minimum is 35% in external examination, out of 30 i.e. 11 out of 30 will be taken as pass mark for UG students.
- 2. An aggregate of 20 marks for UG (sum of Internal Assessment and End Semester Examination).